Integral dari $$$3^{\sqrt{2} \sqrt{x}}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$3^{\sqrt{2} \sqrt{x}}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int 3^{\sqrt{2} \sqrt{x}}\, dx$$$.

Solusi

Ubah basis:

$${\color{red}{\int{3^{\sqrt{2} \sqrt{x}} d x}}} = {\color{red}{\int{e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}} d x}}}$$

Misalkan $$$u=\sqrt{2} \sqrt{x} \ln{\left(3 \right)}$$$.

Kemudian $$$du=\left(\sqrt{2} \sqrt{x} \ln{\left(3 \right)}\right)^{\prime }dx = \frac{\sqrt{2} \ln{\left(3 \right)}}{2 \sqrt{x}} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{dx}{\sqrt{x}} = \frac{\sqrt{2} du}{\ln{\left(3 \right)}}$$$.

Oleh karena itu,

$${\color{red}{\int{e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}} d x}}} = {\color{red}{\int{\frac{u e^{u}}{\ln{\left(3 \right)}^{2}} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{\ln{\left(3 \right)}^{2}}$$$ dan $$$f{\left(u \right)} = u e^{u}$$$:

$${\color{red}{\int{\frac{u e^{u}}{\ln{\left(3 \right)}^{2}} d u}}} = {\color{red}{\frac{\int{u e^{u} d u}}{\ln{\left(3 \right)}^{2}}}}$$

Untuk integral $$$\int{u e^{u} d u}$$$, gunakan integrasi parsial $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.

Misalkan $$$\operatorname{g}=u$$$ dan $$$\operatorname{dv}=e^{u} du$$$.

Maka $$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (langkah-langkah dapat dilihat di »).

Integralnya menjadi

$$\frac{{\color{red}{\int{u e^{u} d u}}}}{\ln{\left(3 \right)}^{2}}=\frac{{\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}}{\ln{\left(3 \right)}^{2}}=\frac{{\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}}{\ln{\left(3 \right)}^{2}}$$

Integral dari fungsi eksponensial adalah $$$\int{e^{u} d u} = e^{u}$$$:

$$\frac{u e^{u} - {\color{red}{\int{e^{u} d u}}}}{\ln{\left(3 \right)}^{2}} = \frac{u e^{u} - {\color{red}{e^{u}}}}{\ln{\left(3 \right)}^{2}}$$

Ingat bahwa $$$u=\sqrt{2} \sqrt{x} \ln{\left(3 \right)}$$$:

$$\frac{- e^{{\color{red}{u}}} + {\color{red}{u}} e^{{\color{red}{u}}}}{\ln{\left(3 \right)}^{2}} = \frac{- e^{{\color{red}{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}} + {\color{red}{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}} e^{{\color{red}{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}}}{\ln{\left(3 \right)}^{2}}$$

Oleh karena itu,

$$\int{3^{\sqrt{2} \sqrt{x}} d x} = \frac{\sqrt{2} \sqrt{x} e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}} \ln{\left(3 \right)} - e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}{\ln{\left(3 \right)}^{2}}$$

Sederhanakan:

$$\int{3^{\sqrt{2} \sqrt{x}} d x} = \frac{\left(\sqrt{2} \sqrt{x} \ln{\left(3 \right)} - 1\right) e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}{\ln{\left(3 \right)}^{2}}$$

Tambahkan konstanta integrasi:

$$\int{3^{\sqrt{2} \sqrt{x}} d x} = \frac{\left(\sqrt{2} \sqrt{x} \ln{\left(3 \right)} - 1\right) e^{\sqrt{2} \sqrt{x} \ln{\left(3 \right)}}}{\ln{\left(3 \right)}^{2}}+C$$

Jawaban

$$$\int 3^{\sqrt{2} \sqrt{x}}\, dx = \frac{\left(\sqrt{2} \sqrt{x} \ln\left(3\right) - 1\right) e^{\sqrt{2} \sqrt{x} \ln\left(3\right)}}{\ln^{2}\left(3\right)} + C$$$A


Please try a new game Rotatly