Integral dari $$$x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)$$$

Kalkulator akan menemukan integral/antiturunan dari $$$x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)\right)d x}}} = {\color{red}{\left(- \int{\left(31 x - 31\right) \left(x e^{2} - 4\right) d x} + \int{x \left(21 x - 21\right) e^{2} d x}\right)}}$$

Sederhanakan integran:

$$\int{x \left(21 x - 21\right) e^{2} d x} - {\color{red}{\int{\left(31 x - 31\right) \left(x e^{2} - 4\right) d x}}} = \int{x \left(21 x - 21\right) e^{2} d x} - {\color{red}{\int{31 \left(x - 1\right) \left(x e^{2} - 4\right) d x}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=31$$$ dan $$$f{\left(x \right)} = \left(x - 1\right) \left(x e^{2} - 4\right)$$$:

$$\int{x \left(21 x - 21\right) e^{2} d x} - {\color{red}{\int{31 \left(x - 1\right) \left(x e^{2} - 4\right) d x}}} = \int{x \left(21 x - 21\right) e^{2} d x} - {\color{red}{\left(31 \int{\left(x - 1\right) \left(x e^{2} - 4\right) d x}\right)}}$$

Expand the expression:

$$\int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\int{\left(x - 1\right) \left(x e^{2} - 4\right) d x}}} = \int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\int{\left(x^{2} e^{2} - x e^{2} - 4 x + 4\right)d x}}}$$

Integralkan suku demi suku:

$$\int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\int{\left(x^{2} e^{2} - x e^{2} - 4 x + 4\right)d x}}} = \int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\left(\int{4 d x} - \int{4 x d x} - \int{x e^{2} d x} + \int{x^{2} e^{2} d x}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=4$$$:

$$31 \int{4 x d x} + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\int{4 d x}}} = 31 \int{4 x d x} + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\left(4 x\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=4$$$ dan $$$f{\left(x \right)} = x$$$:

$$- 124 x + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} + 31 {\color{red}{\int{4 x d x}}} = - 124 x + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} + 31 {\color{red}{\left(4 \int{x d x}\right)}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:

$$- 124 x + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} + 124 {\color{red}{\int{x d x}}}=- 124 x + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} + 124 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 124 x + 31 \int{x e^{2} d x} - 31 \int{x^{2} e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} + 124 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=e^{2}$$$ dan $$$f{\left(x \right)} = x^{2}$$$:

$$62 x^{2} - 124 x + 31 \int{x e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{\int{x^{2} e^{2} d x}}} = 62 x^{2} - 124 x + 31 \int{x e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 {\color{red}{e^{2} \int{x^{2} d x}}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:

$$62 x^{2} - 124 x + 31 \int{x e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 e^{2} {\color{red}{\int{x^{2} d x}}}=62 x^{2} - 124 x + 31 \int{x e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 e^{2} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=62 x^{2} - 124 x + 31 \int{x e^{2} d x} + \int{x \left(21 x - 21\right) e^{2} d x} - 31 e^{2} {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=e^{2}$$$ dan $$$f{\left(x \right)} = x$$$:

$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} - 124 x + \int{x \left(21 x - 21\right) e^{2} d x} + 31 {\color{red}{\int{x e^{2} d x}}} = - \frac{31 x^{3} e^{2}}{3} + 62 x^{2} - 124 x + \int{x \left(21 x - 21\right) e^{2} d x} + 31 {\color{red}{e^{2} \int{x d x}}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:

$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} - 124 x + \int{x \left(21 x - 21\right) e^{2} d x} + 31 e^{2} {\color{red}{\int{x d x}}}=- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} - 124 x + \int{x \left(21 x - 21\right) e^{2} d x} + 31 e^{2} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} - 124 x + \int{x \left(21 x - 21\right) e^{2} d x} + 31 e^{2} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Sederhanakan integran:

$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + {\color{red}{\int{x \left(21 x - 21\right) e^{2} d x}}} = - \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + {\color{red}{\int{21 x \left(x - 1\right) e^{2} d x}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=21 e^{2}$$$ dan $$$f{\left(x \right)} = x \left(x - 1\right)$$$:

$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + {\color{red}{\int{21 x \left(x - 1\right) e^{2} d x}}} = - \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + {\color{red}{\left(21 e^{2} \int{x \left(x - 1\right) d x}\right)}}$$

Expand the expression:

$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} {\color{red}{\int{x \left(x - 1\right) d x}}} = - \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} {\color{red}{\int{\left(x^{2} - x\right)d x}}}$$

Integralkan suku demi suku:

$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} {\color{red}{\int{\left(x^{2} - x\right)d x}}} = - \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} {\color{red}{\left(- \int{x d x} + \int{x^{2} d x}\right)}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:

$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} \left(- \int{x d x} + {\color{red}{\int{x^{2} d x}}}\right)=- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} \left(- \int{x d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}\right)=- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} \left(- \int{x d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}\right)$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:

$$- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} \left(\frac{x^{3}}{3} - {\color{red}{\int{x d x}}}\right)=- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} \left(\frac{x^{3}}{3} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}\right)=- \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 e^{2} \left(\frac{x^{3}}{3} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}\right)$$

Oleh karena itu,

$$\int{\left(x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)\right)d x} = - \frac{31 x^{3} e^{2}}{3} + 62 x^{2} + \frac{31 x^{2} e^{2}}{2} - 124 x + 21 \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right) e^{2}$$

Sederhanakan:

$$\int{\left(x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)\right)d x} = \frac{x \left(- 10 x^{2} e^{2} + 15 x e^{2} + 186 x - 372\right)}{3}$$

Tambahkan konstanta integrasi:

$$\int{\left(x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)\right)d x} = \frac{x \left(- 10 x^{2} e^{2} + 15 x e^{2} + 186 x - 372\right)}{3}+C$$

Jawaban

$$$\int \left(x \left(21 x - 21\right) e^{2} - \left(31 x - 31\right) \left(x e^{2} - 4\right)\right)\, dx = \frac{x \left(- 10 x^{2} e^{2} + 15 x e^{2} + 186 x - 372\right)}{3} + C$$$A


Please try a new game Rotatly