Integral dari $$$- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2$$$

Kalkulator akan menemukan integral/antiturunan dari $$$- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2\right)d x}}} = {\color{red}{\left(\int{2 d x} - \int{\frac{3 \sqrt{13} \sqrt{x}}{13} d x}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=2$$$:

$$- \int{\frac{3 \sqrt{13} \sqrt{x}}{13} d x} + {\color{red}{\int{2 d x}}} = - \int{\frac{3 \sqrt{13} \sqrt{x}}{13} d x} + {\color{red}{\left(2 x\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{3 \sqrt{13}}{13}$$$ dan $$$f{\left(x \right)} = \sqrt{x}$$$:

$$2 x - {\color{red}{\int{\frac{3 \sqrt{13} \sqrt{x}}{13} d x}}} = 2 x - {\color{red}{\left(\frac{3 \sqrt{13} \int{\sqrt{x} d x}}{13}\right)}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=\frac{1}{2}$$$:

$$2 x - \frac{3 \sqrt{13} {\color{red}{\int{\sqrt{x} d x}}}}{13}=2 x - \frac{3 \sqrt{13} {\color{red}{\int{x^{\frac{1}{2}} d x}}}}{13}=2 x - \frac{3 \sqrt{13} {\color{red}{\frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}}{13}=2 x - \frac{3 \sqrt{13} {\color{red}{\left(\frac{2 x^{\frac{3}{2}}}{3}\right)}}}{13}$$

Oleh karena itu,

$$\int{\left(- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2\right)d x} = - \frac{2 \sqrt{13} x^{\frac{3}{2}}}{13} + 2 x$$

Tambahkan konstanta integrasi:

$$\int{\left(- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2\right)d x} = - \frac{2 \sqrt{13} x^{\frac{3}{2}}}{13} + 2 x+C$$

Jawaban

$$$\int \left(- \frac{3 \sqrt{13} \sqrt{x}}{13} + 2\right)\, dx = \left(- \frac{2 \sqrt{13} x^{\frac{3}{2}}}{13} + 2 x\right) + C$$$A


Please try a new game Rotatly