Integral dari $$$62 x + \left(12 x - 12\right) e^{2} - 62$$$

Kalkulator akan menemukan integral/antiturunan dari $$$62 x + \left(12 x - 12\right) e^{2} - 62$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(62 x + \left(12 x - 12\right) e^{2} - 62\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(62 x + \left(12 x - 12\right) e^{2} - 62\right)d x}}} = {\color{red}{\left(- \int{62 d x} + \int{62 x d x} + \int{\left(12 x - 12\right) e^{2} d x}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=62$$$:

$$\int{62 x d x} + \int{\left(12 x - 12\right) e^{2} d x} - {\color{red}{\int{62 d x}}} = \int{62 x d x} + \int{\left(12 x - 12\right) e^{2} d x} - {\color{red}{\left(62 x\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=62$$$ dan $$$f{\left(x \right)} = x$$$:

$$- 62 x + \int{\left(12 x - 12\right) e^{2} d x} + {\color{red}{\int{62 x d x}}} = - 62 x + \int{\left(12 x - 12\right) e^{2} d x} + {\color{red}{\left(62 \int{x d x}\right)}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:

$$- 62 x + \int{\left(12 x - 12\right) e^{2} d x} + 62 {\color{red}{\int{x d x}}}=- 62 x + \int{\left(12 x - 12\right) e^{2} d x} + 62 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 62 x + \int{\left(12 x - 12\right) e^{2} d x} + 62 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Sederhanakan integran:

$$31 x^{2} - 62 x + {\color{red}{\int{\left(12 x - 12\right) e^{2} d x}}} = 31 x^{2} - 62 x + {\color{red}{\int{12 \left(x - 1\right) e^{2} d x}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=12 e^{2}$$$ dan $$$f{\left(x \right)} = x - 1$$$:

$$31 x^{2} - 62 x + {\color{red}{\int{12 \left(x - 1\right) e^{2} d x}}} = 31 x^{2} - 62 x + {\color{red}{\left(12 e^{2} \int{\left(x - 1\right)d x}\right)}}$$

Integralkan suku demi suku:

$$31 x^{2} - 62 x + 12 e^{2} {\color{red}{\int{\left(x - 1\right)d x}}} = 31 x^{2} - 62 x + 12 e^{2} {\color{red}{\left(- \int{1 d x} + \int{x d x}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:

$$31 x^{2} - 62 x + 12 e^{2} \left(\int{x d x} - {\color{red}{\int{1 d x}}}\right) = 31 x^{2} - 62 x + 12 e^{2} \left(\int{x d x} - {\color{red}{x}}\right)$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:

$$31 x^{2} - 62 x + 12 e^{2} \left(- x + {\color{red}{\int{x d x}}}\right)=31 x^{2} - 62 x + 12 e^{2} \left(- x + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}\right)=31 x^{2} - 62 x + 12 e^{2} \left(- x + {\color{red}{\left(\frac{x^{2}}{2}\right)}}\right)$$

Oleh karena itu,

$$\int{\left(62 x + \left(12 x - 12\right) e^{2} - 62\right)d x} = 31 x^{2} - 62 x + 12 \left(\frac{x^{2}}{2} - x\right) e^{2}$$

Sederhanakan:

$$\int{\left(62 x + \left(12 x - 12\right) e^{2} - 62\right)d x} = x \left(31 + 6 e^{2}\right) \left(x - 2\right)$$

Tambahkan konstanta integrasi:

$$\int{\left(62 x + \left(12 x - 12\right) e^{2} - 62\right)d x} = x \left(31 + 6 e^{2}\right) \left(x - 2\right)+C$$

Jawaban

$$$\int \left(62 x + \left(12 x - 12\right) e^{2} - 62\right)\, dx = x \left(31 + 6 e^{2}\right) \left(x - 2\right) + C$$$A


Please try a new game Rotatly