Integral dari $$$11 \cos{\left(2 x \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int 11 \cos{\left(2 x \right)}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=11$$$ dan $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$:
$${\color{red}{\int{11 \cos{\left(2 x \right)} d x}}} = {\color{red}{\left(11 \int{\cos{\left(2 x \right)} d x}\right)}}$$
Misalkan $$$u=2 x$$$.
Kemudian $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{2}$$$.
Dengan demikian,
$$11 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = 11 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$11 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 11 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
Integral dari kosinus adalah $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{11 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = \frac{11 {\color{red}{\sin{\left(u \right)}}}}{2}$$
Ingat bahwa $$$u=2 x$$$:
$$\frac{11 \sin{\left({\color{red}{u}} \right)}}{2} = \frac{11 \sin{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
Oleh karena itu,
$$\int{11 \cos{\left(2 x \right)} d x} = \frac{11 \sin{\left(2 x \right)}}{2}$$
Tambahkan konstanta integrasi:
$$\int{11 \cos{\left(2 x \right)} d x} = \frac{11 \sin{\left(2 x \right)}}{2}+C$$
Jawaban
$$$\int 11 \cos{\left(2 x \right)}\, dx = \frac{11 \sin{\left(2 x \right)}}{2} + C$$$A