Integral dari $$$- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)\, dx$$$.

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=- \frac{3}{2}$$$ dan $$$f{\left(x \right)} = \sin{\left(\frac{x}{2} - 1 \right)}$$$:

$${\color{red}{\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x}}} = {\color{red}{\left(- \frac{3 \int{\sin{\left(\frac{x}{2} - 1 \right)} d x}}{2}\right)}}$$

Misalkan $$$u=\frac{x}{2} - 1$$$.

Kemudian $$$du=\left(\frac{x}{2} - 1\right)^{\prime }dx = \frac{dx}{2}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = 2 du$$$.

Integral tersebut dapat ditulis ulang sebagai

$$- \frac{3 {\color{red}{\int{\sin{\left(\frac{x}{2} - 1 \right)} d x}}}}{2} = - \frac{3 {\color{red}{\int{2 \sin{\left(u \right)} d u}}}}{2}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=2$$$ dan $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$- \frac{3 {\color{red}{\int{2 \sin{\left(u \right)} d u}}}}{2} = - \frac{3 {\color{red}{\left(2 \int{\sin{\left(u \right)} d u}\right)}}}{2}$$

Integral dari sinus adalah $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- 3 {\color{red}{\int{\sin{\left(u \right)} d u}}} = - 3 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$

Ingat bahwa $$$u=\frac{x}{2} - 1$$$:

$$3 \cos{\left({\color{red}{u}} \right)} = 3 \cos{\left({\color{red}{\left(\frac{x}{2} - 1\right)}} \right)}$$

Oleh karena itu,

$$\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x} = 3 \cos{\left(\frac{x}{2} - 1 \right)}$$

Tambahkan konstanta integrasi:

$$\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x} = 3 \cos{\left(\frac{x}{2} - 1 \right)}+C$$

Jawaban

$$$\int \left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)\, dx = 3 \cos{\left(\frac{x}{2} - 1 \right)} + C$$$A


Please try a new game Rotatly