Integral dari $$$\frac{a^{3} \ln\left(x\right)}{x}$$$ terhadap $$$e$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{a^{3} \ln\left(x\right)}{x}\, de$$$.
Solusi
Terapkan aturan konstanta $$$\int c\, de = c e$$$ dengan $$$c=\frac{a^{3} \ln{\left(x \right)}}{x}$$$:
$${\color{red}{\int{\frac{a^{3} \ln{\left(x \right)}}{x} d e}}} = {\color{red}{\frac{a^{3} e \ln{\left(x \right)}}{x}}}$$
Oleh karena itu,
$$\int{\frac{a^{3} \ln{\left(x \right)}}{x} d e} = \frac{a^{3} e \ln{\left(x \right)}}{x}$$
Tambahkan konstanta integrasi:
$$\int{\frac{a^{3} \ln{\left(x \right)}}{x} d e} = \frac{a^{3} e \ln{\left(x \right)}}{x}+C$$
Jawaban
$$$\int \frac{a^{3} \ln\left(x\right)}{x}\, de = \frac{a^{3} e \ln\left(x\right)}{x} + C$$$A