Integral dari $$$-1 + \frac{1}{\cos{\left(x \right)}}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$-1 + \frac{1}{\cos{\left(x \right)}}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(-1 + \frac{1}{\cos{\left(x \right)}}\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(-1 + \frac{1}{\cos{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{\cos{\left(x \right)}} d x}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:

$$\int{\frac{1}{\cos{\left(x \right)}} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{\cos{\left(x \right)}} d x} - {\color{red}{x}}$$

Tulis ulang kosinus dalam bentuk sinus menggunakan rumus $$$\cos\left(x\right)=\sin\left(x + \frac{\pi}{2}\right)$$$ dan kemudian tulis ulang sinus menggunakan rumus sudut rangkap $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:

$$- x + {\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}} = - x + {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}$$

Kalikan pembilang dan penyebut dengan $$$\sec^2\left(\frac{x}{2} + \frac{\pi}{4} \right)$$$:

$$- x + {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}} = - x + {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}$$

Misalkan $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$.

Kemudian $$$du=\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} dx = 2 du$$$.

Oleh karena itu,

$$- x + {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}} = - x + {\color{red}{\int{\frac{1}{u} d u}}}$$

Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- x + {\color{red}{\int{\frac{1}{u} d u}}} = - x + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Ingat bahwa $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$:

$$- x + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - x + \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}$$

Oleh karena itu,

$$\int{\left(-1 + \frac{1}{\cos{\left(x \right)}}\right)d x} = - x + \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}$$

Tambahkan konstanta integrasi:

$$\int{\left(-1 + \frac{1}{\cos{\left(x \right)}}\right)d x} = - x + \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}+C$$

Jawaban

$$$\int \left(-1 + \frac{1}{\cos{\left(x \right)}}\right)\, dx = \left(- x + \ln\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right|\right)\right) + C$$$A


Please try a new game Rotatly