Integral dari $$$\frac{1}{2} - x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(\frac{1}{2} - x\right)\, dx$$$.
Solusi
Integralkan suku demi suku:
$${\color{red}{\int{\left(\frac{1}{2} - x\right)d x}}} = {\color{red}{\left(\int{\frac{1}{2} d x} - \int{x d x}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=\frac{1}{2}$$$:
$$- \int{x d x} + {\color{red}{\int{\frac{1}{2} d x}}} = - \int{x d x} + {\color{red}{\left(\frac{x}{2}\right)}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:
$$\frac{x}{2} - {\color{red}{\int{x d x}}}=\frac{x}{2} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x}{2} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Oleh karena itu,
$$\int{\left(\frac{1}{2} - x\right)d x} = - \frac{x^{2}}{2} + \frac{x}{2}$$
Sederhanakan:
$$\int{\left(\frac{1}{2} - x\right)d x} = \frac{x \left(1 - x\right)}{2}$$
Tambahkan konstanta integrasi:
$$\int{\left(\frac{1}{2} - x\right)d x} = \frac{x \left(1 - x\right)}{2}+C$$
Jawaban
$$$\int \left(\frac{1}{2} - x\right)\, dx = \frac{x \left(1 - x\right)}{2} + C$$$A