Integral dari $$$\frac{1}{2} - \cos{\left(2 x \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{1}{2} - \cos{\left(2 x \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(\frac{1}{2} - \cos{\left(2 x \right)}\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(\frac{1}{2} - \cos{\left(2 x \right)}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{2} d x} - \int{\cos{\left(2 x \right)} d x}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=\frac{1}{2}$$$:

$$- \int{\cos{\left(2 x \right)} d x} + {\color{red}{\int{\frac{1}{2} d x}}} = - \int{\cos{\left(2 x \right)} d x} + {\color{red}{\left(\frac{x}{2}\right)}}$$

Misalkan $$$u=2 x$$$.

Kemudian $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{2}$$$.

Oleh karena itu,

$$\frac{x}{2} - {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = \frac{x}{2} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{x}{2} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = \frac{x}{2} - {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

Integral dari kosinus adalah $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{x}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = \frac{x}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$

Ingat bahwa $$$u=2 x$$$:

$$\frac{x}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{2} = \frac{x}{2} - \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$

Oleh karena itu,

$$\int{\left(\frac{1}{2} - \cos{\left(2 x \right)}\right)d x} = \frac{x}{2} - \frac{\sin{\left(2 x \right)}}{2}$$

Sederhanakan:

$$\int{\left(\frac{1}{2} - \cos{\left(2 x \right)}\right)d x} = \frac{x - \sin{\left(2 x \right)}}{2}$$

Tambahkan konstanta integrasi:

$$\int{\left(\frac{1}{2} - \cos{\left(2 x \right)}\right)d x} = \frac{x - \sin{\left(2 x \right)}}{2}+C$$

Jawaban

$$$\int \left(\frac{1}{2} - \cos{\left(2 x \right)}\right)\, dx = \frac{x - \sin{\left(2 x \right)}}{2} + C$$$A


Please try a new game Rotatly