Integral dari $$$\frac{1}{x \ln\left(x\right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{x \ln\left(x\right)}\, dx$$$.
Solusi
Misalkan $$$u=\ln{\left(x \right)}$$$.
Kemudian $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{dx}{x} = du$$$.
Integral tersebut dapat ditulis ulang sebagai
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Ingat bahwa $$$u=\ln{\left(x \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\ln{\left(x \right)}}}}\right| \right)}$$
Oleh karena itu,
$$\int{\frac{1}{x \ln{\left(x \right)}} d x} = \ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{x \ln{\left(x \right)}} d x} = \ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}+C$$
Jawaban
$$$\int \frac{1}{x \ln\left(x\right)}\, dx = \ln\left(\left|{\ln\left(x\right)}\right|\right) + C$$$A