Integral dari $$$\frac{1}{2 - \cos{\left(2 x \right)}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{2 - \cos{\left(2 x \right)}}\, dx$$$.
Solusi
Misalkan $$$u=2 x$$$.
Kemudian $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{2}$$$.
Integralnya menjadi
$${\color{red}{\int{\frac{1}{2 - \cos{\left(2 x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(\cos{\left(u \right)} - 2\right)}\right)d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=- \frac{1}{2}$$$ dan $$$f{\left(u \right)} = \frac{1}{\cos{\left(u \right)} - 2}$$$:
$${\color{red}{\int{\left(- \frac{1}{2 \left(\cos{\left(u \right)} - 2\right)}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{\cos{\left(u \right)} - 2} d u}}{2}\right)}}$$
Tulis ulang integran menggunakan rumus $$$\cos{\left( u \right)}=\frac{1 - \tan^{2}{\left(\frac{ u }{2} \right)}}{\tan^{2}{\left(\frac{ u }{2} \right)} + 1}$$$:
$$- \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)} - 2} d u}}}}{2} = - \frac{{\color{red}{\int{\frac{1}{\frac{1 - \tan^{2}{\left(\frac{u}{2} \right)}}{\tan^{2}{\left(\frac{u}{2} \right)} + 1} - 2} d u}}}}{2}$$
Misalkan $$$v=\tan{\left(\frac{u}{2} \right)}$$$.
Kemudian $$$u=2 \operatorname{atan}{\left(v \right)}$$$ dan $$$du=\left(2 \operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{2}{v^{2} + 1} dv$$$ (langkah-langkahnya dapat dilihat »).
Integral tersebut dapat ditulis ulang sebagai
$$- \frac{{\color{red}{\int{\frac{1}{\frac{1 - \tan^{2}{\left(\frac{u}{2} \right)}}{\tan^{2}{\left(\frac{u}{2} \right)} + 1} - 2} d u}}}}{2} = - \frac{{\color{red}{\int{\frac{2}{\left(v^{2} + 1\right) \left(\frac{1 - v^{2}}{v^{2} + 1} - 2\right)} d v}}}}{2}$$
Sederhanakan:
$$- \frac{{\color{red}{\int{\frac{2}{\left(v^{2} + 1\right) \left(\frac{1 - v^{2}}{v^{2} + 1} - 2\right)} d v}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{2}{3 v^{2} + 1}\right)d v}}}}{2}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ dengan $$$c=-2$$$ dan $$$f{\left(v \right)} = \frac{1}{3 v^{2} + 1}$$$:
$$- \frac{{\color{red}{\int{\left(- \frac{2}{3 v^{2} + 1}\right)d v}}}}{2} = - \frac{{\color{red}{\left(- 2 \int{\frac{1}{3 v^{2} + 1} d v}\right)}}}{2}$$
Misalkan $$$w=\sqrt{3} v$$$.
Kemudian $$$dw=\left(\sqrt{3} v\right)^{\prime }dv = \sqrt{3} dv$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dv = \frac{\sqrt{3} dw}{3}$$$.
Integralnya menjadi
$${\color{red}{\int{\frac{1}{3 v^{2} + 1} d v}}} = {\color{red}{\int{\frac{\sqrt{3}}{3 \left(w^{2} + 1\right)} d w}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ dengan $$$c=\frac{\sqrt{3}}{3}$$$ dan $$$f{\left(w \right)} = \frac{1}{w^{2} + 1}$$$:
$${\color{red}{\int{\frac{\sqrt{3}}{3 \left(w^{2} + 1\right)} d w}}} = {\color{red}{\left(\frac{\sqrt{3} \int{\frac{1}{w^{2} + 1} d w}}{3}\right)}}$$
Integral dari $$$\frac{1}{w^{2} + 1}$$$ adalah $$$\int{\frac{1}{w^{2} + 1} d w} = \operatorname{atan}{\left(w \right)}$$$:
$$\frac{\sqrt{3} {\color{red}{\int{\frac{1}{w^{2} + 1} d w}}}}{3} = \frac{\sqrt{3} {\color{red}{\operatorname{atan}{\left(w \right)}}}}{3}$$
Ingat bahwa $$$w=\sqrt{3} v$$$:
$$\frac{\sqrt{3} \operatorname{atan}{\left({\color{red}{w}} \right)}}{3} = \frac{\sqrt{3} \operatorname{atan}{\left({\color{red}{\sqrt{3} v}} \right)}}{3}$$
Ingat bahwa $$$v=\tan{\left(\frac{u}{2} \right)}$$$:
$$\frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} {\color{red}{v}} \right)}}{3} = \frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} {\color{red}{\tan{\left(\frac{u}{2} \right)}}} \right)}}{3}$$
Ingat bahwa $$$u=2 x$$$:
$$\frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} \tan{\left(\frac{{\color{red}{u}}}{2} \right)} \right)}}{3} = \frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} \tan{\left(\frac{{\color{red}{\left(2 x\right)}}}{2} \right)} \right)}}{3}$$
Oleh karena itu,
$$\int{\frac{1}{2 - \cos{\left(2 x \right)}} d x} = \frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} \tan{\left(x \right)} \right)}}{3}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{2 - \cos{\left(2 x \right)}} d x} = \frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} \tan{\left(x \right)} \right)}}{3}+C$$
Jawaban
$$$\int \frac{1}{2 - \cos{\left(2 x \right)}}\, dx = \frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} \tan{\left(x \right)} \right)}}{3} + C$$$A