Integral dari $$$\cos{\left(x \right)} + 1$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(\cos{\left(x \right)} + 1\right)\, dx$$$.
Solusi
Integralkan suku demi suku:
$${\color{red}{\int{\left(\cos{\left(x \right)} + 1\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\cos{\left(x \right)} d x}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:
$$\int{\cos{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = \int{\cos{\left(x \right)} d x} + {\color{red}{x}}$$
Integral dari kosinus adalah $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$x + {\color{red}{\int{\cos{\left(x \right)} d x}}} = x + {\color{red}{\sin{\left(x \right)}}}$$
Oleh karena itu,
$$\int{\left(\cos{\left(x \right)} + 1\right)d x} = x + \sin{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\left(\cos{\left(x \right)} + 1\right)d x} = x + \sin{\left(x \right)}+C$$
Jawaban
$$$\int \left(\cos{\left(x \right)} + 1\right)\, dx = \left(x + \sin{\left(x \right)}\right) + C$$$A