Integral dari $$$- 8 \cos{\left(t \right)} - 1$$$

Kalkulator akan menemukan integral/antiturunan dari $$$- 8 \cos{\left(t \right)} - 1$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(- 8 \cos{\left(t \right)} - 1\right)\, dt$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(- 8 \cos{\left(t \right)} - 1\right)d t}}} = {\color{red}{\left(- \int{1 d t} - \int{8 \cos{\left(t \right)} d t}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dt = c t$$$ dengan $$$c=1$$$:

$$- \int{8 \cos{\left(t \right)} d t} - {\color{red}{\int{1 d t}}} = - \int{8 \cos{\left(t \right)} d t} - {\color{red}{t}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ dengan $$$c=8$$$ dan $$$f{\left(t \right)} = \cos{\left(t \right)}$$$:

$$- t - {\color{red}{\int{8 \cos{\left(t \right)} d t}}} = - t - {\color{red}{\left(8 \int{\cos{\left(t \right)} d t}\right)}}$$

Integral dari kosinus adalah $$$\int{\cos{\left(t \right)} d t} = \sin{\left(t \right)}$$$:

$$- t - 8 {\color{red}{\int{\cos{\left(t \right)} d t}}} = - t - 8 {\color{red}{\sin{\left(t \right)}}}$$

Oleh karena itu,

$$\int{\left(- 8 \cos{\left(t \right)} - 1\right)d t} = - t - 8 \sin{\left(t \right)}$$

Tambahkan konstanta integrasi:

$$\int{\left(- 8 \cos{\left(t \right)} - 1\right)d t} = - t - 8 \sin{\left(t \right)}+C$$

Jawaban

$$$\int \left(- 8 \cos{\left(t \right)} - 1\right)\, dt = \left(- t - 8 \sin{\left(t \right)}\right) + C$$$A


Please try a new game Rotatly