Integral dari $$$- 4 x e^{- x}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(- 4 x e^{- x}\right)\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=-4$$$ dan $$$f{\left(x \right)} = x e^{- x}$$$:
$${\color{red}{\int{\left(- 4 x e^{- x}\right)d x}}} = {\color{red}{\left(- 4 \int{x e^{- x} d x}\right)}}$$
Untuk integral $$$\int{x e^{- x} d x}$$$, gunakan integrasi parsial $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Misalkan $$$\operatorname{u}=x$$$ dan $$$\operatorname{dv}=e^{- x} dx$$$.
Maka $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$ (langkah-langkah dapat dilihat di »).
Dengan demikian,
$$- 4 {\color{red}{\int{x e^{- x} d x}}}=- 4 {\color{red}{\left(x \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 1 d x}\right)}}=- 4 {\color{red}{\left(- x e^{- x} - \int{\left(- e^{- x}\right)d x}\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=-1$$$ dan $$$f{\left(x \right)} = e^{- x}$$$:
$$4 x e^{- x} + 4 {\color{red}{\int{\left(- e^{- x}\right)d x}}} = 4 x e^{- x} + 4 {\color{red}{\left(- \int{e^{- x} d x}\right)}}$$
Misalkan $$$u=- x$$$.
Kemudian $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = - du$$$.
Dengan demikian,
$$4 x e^{- x} - 4 {\color{red}{\int{e^{- x} d x}}} = 4 x e^{- x} - 4 {\color{red}{\int{\left(- e^{u}\right)d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=-1$$$ dan $$$f{\left(u \right)} = e^{u}$$$:
$$4 x e^{- x} - 4 {\color{red}{\int{\left(- e^{u}\right)d u}}} = 4 x e^{- x} - 4 {\color{red}{\left(- \int{e^{u} d u}\right)}}$$
Integral dari fungsi eksponensial adalah $$$\int{e^{u} d u} = e^{u}$$$:
$$4 x e^{- x} + 4 {\color{red}{\int{e^{u} d u}}} = 4 x e^{- x} + 4 {\color{red}{e^{u}}}$$
Ingat bahwa $$$u=- x$$$:
$$4 x e^{- x} + 4 e^{{\color{red}{u}}} = 4 x e^{- x} + 4 e^{{\color{red}{\left(- x\right)}}}$$
Oleh karena itu,
$$\int{\left(- 4 x e^{- x}\right)d x} = 4 x e^{- x} + 4 e^{- x}$$
Sederhanakan:
$$\int{\left(- 4 x e^{- x}\right)d x} = 4 \left(x + 1\right) e^{- x}$$
Tambahkan konstanta integrasi:
$$\int{\left(- 4 x e^{- x}\right)d x} = 4 \left(x + 1\right) e^{- x}+C$$
Jawaban
$$$\int \left(- 4 x e^{- x}\right)\, dx = 4 \left(x + 1\right) e^{- x} + C$$$A