Integral dari $$$- 8 a l t \left(t - 1\right) e^{- 5 t}$$$ terhadap $$$t$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)\, dt$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ dengan $$$c=- 8 a l$$$ dan $$$f{\left(t \right)} = t \left(t - 1\right) e^{- 5 t}$$$:
$${\color{red}{\int{\left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)d t}}} = {\color{red}{\left(- 8 a l \int{t \left(t - 1\right) e^{- 5 t} d t}\right)}}$$
Untuk integral $$$\int{t \left(t - 1\right) e^{- 5 t} d t}$$$, gunakan integrasi parsial $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Misalkan $$$\operatorname{u}=t \left(t - 1\right)$$$ dan $$$\operatorname{dv}=e^{- 5 t} dt$$$.
Maka $$$\operatorname{du}=\left(t \left(t - 1\right)\right)^{\prime }dt=\left(2 t - 1\right) dt$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{e^{- 5 t} d t}=- \frac{e^{- 5 t}}{5}$$$ (langkah-langkah dapat dilihat di »).
Oleh karena itu,
$$- 8 a l {\color{red}{\int{t \left(t - 1\right) e^{- 5 t} d t}}}=- 8 a l {\color{red}{\left(t \left(t - 1\right) \cdot \left(- \frac{e^{- 5 t}}{5}\right)-\int{\left(- \frac{e^{- 5 t}}{5}\right) \cdot \left(2 t - 1\right) d t}\right)}}=- 8 a l {\color{red}{\left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - \int{\frac{\left(1 - 2 t\right) e^{- 5 t}}{5} d t}\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ dengan $$$c=\frac{1}{5}$$$ dan $$$f{\left(t \right)} = \left(1 - 2 t\right) e^{- 5 t}$$$:
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - {\color{red}{\int{\frac{\left(1 - 2 t\right) e^{- 5 t}}{5} d t}}}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - {\color{red}{\left(\frac{\int{\left(1 - 2 t\right) e^{- 5 t} d t}}{5}\right)}}\right)$$
Untuk integral $$$\int{\left(1 - 2 t\right) e^{- 5 t} d t}$$$, gunakan integrasi parsial $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Misalkan $$$\operatorname{u}=1 - 2 t$$$ dan $$$\operatorname{dv}=e^{- 5 t} dt$$$.
Maka $$$\operatorname{du}=\left(1 - 2 t\right)^{\prime }dt=- 2 dt$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{e^{- 5 t} d t}=- \frac{e^{- 5 t}}{5}$$$ (langkah-langkah dapat dilihat di »).
Dengan demikian,
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - \frac{{\color{red}{\int{\left(1 - 2 t\right) e^{- 5 t} d t}}}}{5}\right)=- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - \frac{{\color{red}{\left(\left(1 - 2 t\right) \cdot \left(- \frac{e^{- 5 t}}{5}\right)-\int{\left(- \frac{e^{- 5 t}}{5}\right) \cdot \left(-2\right) d t}\right)}}}{5}\right)=- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} - \frac{{\color{red}{\left(- \frac{\left(1 - 2 t\right) e^{- 5 t}}{5} - \int{\frac{2 e^{- 5 t}}{5} d t}\right)}}}{5}\right)$$
Terapkan aturan pengali konstanta $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ dengan $$$c=\frac{2}{5}$$$ dan $$$f{\left(t \right)} = e^{- 5 t}$$$:
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{{\color{red}{\int{\frac{2 e^{- 5 t}}{5} d t}}}}{5}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{{\color{red}{\left(\frac{2 \int{e^{- 5 t} d t}}{5}\right)}}}{5}\right)$$
Misalkan $$$u=- 5 t$$$.
Kemudian $$$du=\left(- 5 t\right)^{\prime }dt = - 5 dt$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dt = - \frac{du}{5}$$$.
Oleh karena itu,
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{2 {\color{red}{\int{e^{- 5 t} d t}}}}{25}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{2 {\color{red}{\int{\left(- \frac{e^{u}}{5}\right)d u}}}}{25}\right)$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=- \frac{1}{5}$$$ dan $$$f{\left(u \right)} = e^{u}$$$:
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{2 {\color{red}{\int{\left(- \frac{e^{u}}{5}\right)d u}}}}{25}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} + \frac{2 {\color{red}{\left(- \frac{\int{e^{u} d u}}{5}\right)}}}{25}\right)$$
Integral dari fungsi eksponensial adalah $$$\int{e^{u} d u} = e^{u}$$$:
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 {\color{red}{\int{e^{u} d u}}}}{125}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 {\color{red}{e^{u}}}}{125}\right)$$
Ingat bahwa $$$u=- 5 t$$$:
$$- 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 e^{{\color{red}{u}}}}{125}\right) = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 e^{{\color{red}{\left(- 5 t\right)}}}}{125}\right)$$
Oleh karena itu,
$$\int{\left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)d t} = - 8 a l \left(- \frac{t \left(t - 1\right) e^{- 5 t}}{5} + \frac{\left(1 - 2 t\right) e^{- 5 t}}{25} - \frac{2 e^{- 5 t}}{125}\right)$$
Sederhanakan:
$$\int{\left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)d t} = \frac{8 a l \left(25 t^{2} - 15 t - 3\right) e^{- 5 t}}{125}$$
Tambahkan konstanta integrasi:
$$\int{\left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)d t} = \frac{8 a l \left(25 t^{2} - 15 t - 3\right) e^{- 5 t}}{125}+C$$
Jawaban
$$$\int \left(- 8 a l t \left(t - 1\right) e^{- 5 t}\right)\, dt = \frac{8 a l \left(25 t^{2} - 15 t - 3\right) e^{- 5 t}}{125} + C$$$A