Integral dari $$$5^{- x} x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int 5^{- x} x\, dx$$$.
Solusi
Untuk integral $$$\int{5^{- x} x d x}$$$, gunakan integrasi parsial $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Misalkan $$$\operatorname{u}=x$$$ dan $$$\operatorname{dv}=5^{- x} dx$$$.
Maka $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{5^{- x} d x}=- \frac{5^{- x}}{\ln{\left(5 \right)}}$$$ (langkah-langkah dapat dilihat di »).
Dengan demikian,
$${\color{red}{\int{5^{- x} x d x}}}={\color{red}{\left(x \cdot \left(- \frac{5^{- x}}{\ln{\left(5 \right)}}\right)-\int{\left(- \frac{5^{- x}}{\ln{\left(5 \right)}}\right) \cdot 1 d x}\right)}}={\color{red}{\left(- \int{\left(- \frac{5^{- x}}{\ln{\left(5 \right)}}\right)d x} - \frac{5^{- x} x}{\ln{\left(5 \right)}}\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=- \frac{1}{\ln{\left(5 \right)}}$$$ dan $$$f{\left(x \right)} = 5^{- x}$$$:
$$- {\color{red}{\int{\left(- \frac{5^{- x}}{\ln{\left(5 \right)}}\right)d x}}} - \frac{5^{- x} x}{\ln{\left(5 \right)}} = - {\color{red}{\left(- \frac{\int{5^{- x} d x}}{\ln{\left(5 \right)}}\right)}} - \frac{5^{- x} x}{\ln{\left(5 \right)}}$$
Misalkan $$$u=- x$$$.
Kemudian $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = - du$$$.
Jadi,
$$\frac{{\color{red}{\int{5^{- x} d x}}}}{\ln{\left(5 \right)}} - \frac{5^{- x} x}{\ln{\left(5 \right)}} = \frac{{\color{red}{\int{\left(- 5^{u}\right)d u}}}}{\ln{\left(5 \right)}} - \frac{5^{- x} x}{\ln{\left(5 \right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=-1$$$ dan $$$f{\left(u \right)} = 5^{u}$$$:
$$\frac{{\color{red}{\int{\left(- 5^{u}\right)d u}}}}{\ln{\left(5 \right)}} - \frac{5^{- x} x}{\ln{\left(5 \right)}} = \frac{{\color{red}{\left(- \int{5^{u} d u}\right)}}}{\ln{\left(5 \right)}} - \frac{5^{- x} x}{\ln{\left(5 \right)}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=5$$$:
$$- \frac{{\color{red}{\int{5^{u} d u}}}}{\ln{\left(5 \right)}} - \frac{5^{- x} x}{\ln{\left(5 \right)}} = - \frac{{\color{red}{\frac{5^{u}}{\ln{\left(5 \right)}}}}}{\ln{\left(5 \right)}} - \frac{5^{- x} x}{\ln{\left(5 \right)}}$$
Ingat bahwa $$$u=- x$$$:
$$- \frac{5^{{\color{red}{u}}}}{\ln{\left(5 \right)}^{2}} - \frac{5^{- x} x}{\ln{\left(5 \right)}} = - \frac{5^{{\color{red}{\left(- x\right)}}}}{\ln{\left(5 \right)}^{2}} - \frac{5^{- x} x}{\ln{\left(5 \right)}}$$
Oleh karena itu,
$$\int{5^{- x} x d x} = - \frac{5^{- x} x}{\ln{\left(5 \right)}} - \frac{5^{- x}}{\ln{\left(5 \right)}^{2}}$$
Sederhanakan:
$$\int{5^{- x} x d x} = \frac{5^{- x} \left(- x \ln{\left(5 \right)} - 1\right)}{\ln{\left(5 \right)}^{2}}$$
Tambahkan konstanta integrasi:
$$\int{5^{- x} x d x} = \frac{5^{- x} \left(- x \ln{\left(5 \right)} - 1\right)}{\ln{\left(5 \right)}^{2}}+C$$
Jawaban
$$$\int 5^{- x} x\, dx = \frac{5^{- x} \left(- x \ln\left(5\right) - 1\right)}{\ln^{2}\left(5\right)} + C$$$A