Integral dari $$$b \sin{\left(x \right)}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int b \sin{\left(x \right)}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=b$$$ dan $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{b \sin{\left(x \right)} d x}}} = {\color{red}{b \int{\sin{\left(x \right)} d x}}}$$
Integral dari sinus adalah $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$b {\color{red}{\int{\sin{\left(x \right)} d x}}} = b {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Oleh karena itu,
$$\int{b \sin{\left(x \right)} d x} = - b \cos{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{b \sin{\left(x \right)} d x} = - b \cos{\left(x \right)}+C$$
Jawaban
$$$\int b \sin{\left(x \right)}\, dx = - b \cos{\left(x \right)} + C$$$A