Integral dari $$$9 \sqrt{2} t^{16}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$9 \sqrt{2} t^{16}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int 9 \sqrt{2} t^{16}\, dt$$$.

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ dengan $$$c=9 \sqrt{2}$$$ dan $$$f{\left(t \right)} = t^{16}$$$:

$${\color{red}{\int{9 \sqrt{2} t^{16} d t}}} = {\color{red}{\left(9 \sqrt{2} \int{t^{16} d t}\right)}}$$

Terapkan aturan pangkat $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=16$$$:

$$9 \sqrt{2} {\color{red}{\int{t^{16} d t}}}=9 \sqrt{2} {\color{red}{\frac{t^{1 + 16}}{1 + 16}}}=9 \sqrt{2} {\color{red}{\left(\frac{t^{17}}{17}\right)}}$$

Oleh karena itu,

$$\int{9 \sqrt{2} t^{16} d t} = \frac{9 \sqrt{2} t^{17}}{17}$$

Tambahkan konstanta integrasi:

$$\int{9 \sqrt{2} t^{16} d t} = \frac{9 \sqrt{2} t^{17}}{17}+C$$

Jawaban

$$$\int 9 \sqrt{2} t^{16}\, dt = \frac{9 \sqrt{2} t^{17}}{17} + C$$$A


Please try a new game Rotatly