Integral dari $$$\frac{1}{- \sqrt{3} x + \sqrt{2} x}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{- \sqrt{3} x + \sqrt{2} x}\, dx$$$.
Solusi
Misalkan $$$u=- \sqrt{3} x + \sqrt{2} x$$$.
Kemudian $$$du=\left(- \sqrt{3} x + \sqrt{2} x\right)^{\prime }dx = \left(- \sqrt{3} + \sqrt{2}\right) dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{- \sqrt{3} + \sqrt{2}}$$$.
Oleh karena itu,
$${\color{red}{\int{\frac{1}{- \sqrt{3} x + \sqrt{2} x} d x}}} = {\color{red}{\int{\frac{1}{u \left(- \sqrt{3} + \sqrt{2}\right)} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{- \sqrt{3} + \sqrt{2}}$$$ dan $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\frac{1}{u \left(- \sqrt{3} + \sqrt{2}\right)} d u}}} = {\color{red}{\frac{\int{\frac{1}{u} d u}}{- \sqrt{3} + \sqrt{2}}}}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{- \sqrt{3} + \sqrt{2}} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{- \sqrt{3} + \sqrt{2}}$$
Ingat bahwa $$$u=- \sqrt{3} x + \sqrt{2} x$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{- \sqrt{3} + \sqrt{2}} = \frac{\ln{\left(\left|{{\color{red}{\left(- \sqrt{3} x + \sqrt{2} x\right)}}}\right| \right)}}{- \sqrt{3} + \sqrt{2}}$$
Oleh karena itu,
$$\int{\frac{1}{- \sqrt{3} x + \sqrt{2} x} d x} = \frac{\ln{\left(\left|{- \sqrt{3} x + \sqrt{2} x}\right| \right)}}{- \sqrt{3} + \sqrt{2}}$$
Sederhanakan:
$$\int{\frac{1}{- \sqrt{3} x + \sqrt{2} x} d x} = \frac{\ln{\left(\left|{x}\right| \right)} + \ln{\left(- \sqrt{2} + \sqrt{3} \right)}}{- \sqrt{3} + \sqrt{2}}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{- \sqrt{3} x + \sqrt{2} x} d x} = \frac{\ln{\left(\left|{x}\right| \right)} + \ln{\left(- \sqrt{2} + \sqrt{3} \right)}}{- \sqrt{3} + \sqrt{2}}+C$$
Jawaban
$$$\int \frac{1}{- \sqrt{3} x + \sqrt{2} x}\, dx = \frac{\ln\left(\left|{x}\right|\right) + \ln\left(- \sqrt{2} + \sqrt{3}\right)}{- \sqrt{3} + \sqrt{2}} + C$$$A