Integral dari $$$\frac{\ln^{2}\left(x\right)}{x}$$$ terhadap $$$t$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt$$$.
Solusi
Terapkan aturan konstanta $$$\int c\, dt = c t$$$ dengan $$$c=\frac{\ln{\left(x \right)}^{2}}{x}$$$:
$${\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x} d t}}} = {\color{red}{\frac{t \ln{\left(x \right)}^{2}}{x}}}$$
Oleh karena itu,
$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}+C$$
Jawaban
$$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt = \frac{t \ln^{2}\left(x\right)}{x} + C$$$A