Integral dari $$$\sqrt{x} \left(x^{2} - \frac{2}{x}\right)$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\sqrt{x} \left(x^{2} - \frac{2}{x}\right)$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \sqrt{x} \left(x^{2} - \frac{2}{x}\right)\, dx$$$.

Solusi

Expand the expression:

$${\color{red}{\int{\sqrt{x} \left(x^{2} - \frac{2}{x}\right) d x}}} = {\color{red}{\int{\left(x^{\frac{5}{2}} - \frac{2}{\sqrt{x}}\right)d x}}}$$

Integralkan suku demi suku:

$${\color{red}{\int{\left(x^{\frac{5}{2}} - \frac{2}{\sqrt{x}}\right)d x}}} = {\color{red}{\left(- \int{\frac{2}{\sqrt{x}} d x} + \int{x^{\frac{5}{2}} d x}\right)}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=\frac{5}{2}$$$:

$$- \int{\frac{2}{\sqrt{x}} d x} + {\color{red}{\int{x^{\frac{5}{2}} d x}}}=- \int{\frac{2}{\sqrt{x}} d x} + {\color{red}{\frac{x^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}=- \int{\frac{2}{\sqrt{x}} d x} + {\color{red}{\left(\frac{2 x^{\frac{7}{2}}}{7}\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=2$$$ dan $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$:

$$\frac{2 x^{\frac{7}{2}}}{7} - {\color{red}{\int{\frac{2}{\sqrt{x}} d x}}} = \frac{2 x^{\frac{7}{2}}}{7} - {\color{red}{\left(2 \int{\frac{1}{\sqrt{x}} d x}\right)}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=- \frac{1}{2}$$$:

$$\frac{2 x^{\frac{7}{2}}}{7} - 2 {\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}=\frac{2 x^{\frac{7}{2}}}{7} - 2 {\color{red}{\int{x^{- \frac{1}{2}} d x}}}=\frac{2 x^{\frac{7}{2}}}{7} - 2 {\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}=\frac{2 x^{\frac{7}{2}}}{7} - 2 {\color{red}{\left(2 x^{\frac{1}{2}}\right)}}=\frac{2 x^{\frac{7}{2}}}{7} - 2 {\color{red}{\left(2 \sqrt{x}\right)}}$$

Oleh karena itu,

$$\int{\sqrt{x} \left(x^{2} - \frac{2}{x}\right) d x} = \frac{2 x^{\frac{7}{2}}}{7} - 4 \sqrt{x}$$

Sederhanakan:

$$\int{\sqrt{x} \left(x^{2} - \frac{2}{x}\right) d x} = \frac{2 \sqrt{x} \left(x^{3} - 14\right)}{7}$$

Tambahkan konstanta integrasi:

$$\int{\sqrt{x} \left(x^{2} - \frac{2}{x}\right) d x} = \frac{2 \sqrt{x} \left(x^{3} - 14\right)}{7}+C$$

Jawaban

$$$\int \sqrt{x} \left(x^{2} - \frac{2}{x}\right)\, dx = \frac{2 \sqrt{x} \left(x^{3} - 14\right)}{7} + C$$$A


Please try a new game Rotatly