Integral dari $$$\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{\pi}{40}$$$ dan $$$f{\left(x \right)} = \sin{\left(x \right)} \cos{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40} d x}}} = {\color{red}{\left(\frac{\pi \int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}{40}\right)}}$$
Misalkan $$$u=\sin{\left(x \right)}$$$.
Kemudian $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\cos{\left(x \right)} dx = du$$$.
Oleh karena itu,
$$\frac{\pi {\color{red}{\int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}}}{40} = \frac{\pi {\color{red}{\int{u d u}}}}{40}$$
Terapkan aturan pangkat $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:
$$\frac{\pi {\color{red}{\int{u d u}}}}{40}=\frac{\pi {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{40}=\frac{\pi {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{40}$$
Ingat bahwa $$$u=\sin{\left(x \right)}$$$:
$$\frac{\pi {\color{red}{u}}^{2}}{80} = \frac{\pi {\color{red}{\sin{\left(x \right)}}}^{2}}{80}$$
Oleh karena itu,
$$\int{\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40} d x} = \frac{\pi \sin^{2}{\left(x \right)}}{80}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40} d x} = \frac{\pi \sin^{2}{\left(x \right)}}{80}+C$$
Jawaban
$$$\int \frac{\pi \sin{\left(x \right)} \cos{\left(x \right)}}{40}\, dx = \frac{\pi \sin^{2}{\left(x \right)}}{80} + C$$$A