Integral dari $$$\left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}$$$ terhadap $$$x$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}$$$ terhadap $$$x$$$, dengan langkah-langkah yang ditunjukkan.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}\, dx$$$.

Solusi

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=\left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}$$$:

$${\color{red}{\int{\left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)} d x}}} = {\color{red}{x \left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}}}$$

Oleh karena itu,

$$\int{\left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)} d x} = x \left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}$$

Tambahkan konstanta integrasi:

$$\int{\left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)} d x} = x \left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}+C$$

Jawaban

$$$\int \left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}\, dx = x \left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)} + C$$$A


Please try a new game Rotatly