Integral dari $$$f x \left(x - 1\right)$$$ terhadap $$$x$$$

Kalkulator akan menemukan integral/antiturunan dari $$$f x \left(x - 1\right)$$$ terhadap $$$x$$$, dengan langkah-langkah yang ditunjukkan.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int f x \left(x - 1\right)\, dx$$$.

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=f$$$ dan $$$f{\left(x \right)} = x \left(x - 1\right)$$$:

$${\color{red}{\int{f x \left(x - 1\right) d x}}} = {\color{red}{f \int{x \left(x - 1\right) d x}}}$$

Expand the expression:

$$f {\color{red}{\int{x \left(x - 1\right) d x}}} = f {\color{red}{\int{\left(x^{2} - x\right)d x}}}$$

Integralkan suku demi suku:

$$f {\color{red}{\int{\left(x^{2} - x\right)d x}}} = f {\color{red}{\left(- \int{x d x} + \int{x^{2} d x}\right)}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:

$$f \left(- \int{x d x} + {\color{red}{\int{x^{2} d x}}}\right)=f \left(- \int{x d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}\right)=f \left(- \int{x d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}\right)$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:

$$f \left(\frac{x^{3}}{3} - {\color{red}{\int{x d x}}}\right)=f \left(\frac{x^{3}}{3} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}\right)=f \left(\frac{x^{3}}{3} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}\right)$$

Oleh karena itu,

$$\int{f x \left(x - 1\right) d x} = f \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right)$$

Sederhanakan:

$$\int{f x \left(x - 1\right) d x} = \frac{f x^{2} \left(2 x - 3\right)}{6}$$

Tambahkan konstanta integrasi:

$$\int{f x \left(x - 1\right) d x} = \frac{f x^{2} \left(2 x - 3\right)}{6}+C$$

Jawaban

$$$\int f x \left(x - 1\right)\, dx = \frac{f x^{2} \left(2 x - 3\right)}{6} + C$$$A


Please try a new game Rotatly