Integral dari $$$1679616 x^{41}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int 1679616 x^{41}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=1679616$$$ dan $$$f{\left(x \right)} = x^{41}$$$:
$${\color{red}{\int{1679616 x^{41} d x}}} = {\color{red}{\left(1679616 \int{x^{41} d x}\right)}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=41$$$:
$$1679616 {\color{red}{\int{x^{41} d x}}}=1679616 {\color{red}{\frac{x^{1 + 41}}{1 + 41}}}=1679616 {\color{red}{\left(\frac{x^{42}}{42}\right)}}$$
Oleh karena itu,
$$\int{1679616 x^{41} d x} = \frac{279936 x^{42}}{7}$$
Tambahkan konstanta integrasi:
$$\int{1679616 x^{41} d x} = \frac{279936 x^{42}}{7}+C$$
Jawaban
$$$\int 1679616 x^{41}\, dx = \frac{279936 x^{42}}{7} + C$$$A