Integral dari $$$\frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}}\, dx$$$.
Solusi
Sederhanakan integran:
$${\color{red}{\int{\frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}} d x}}} = {\color{red}{\int{1 d x}}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:
$${\color{red}{\int{1 d x}}} = {\color{red}{x}}$$
Oleh karena itu,
$$\int{\frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}} d x} = x$$
Tambahkan konstanta integrasi:
$$\int{\frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}} d x} = x+C$$
Jawaban
$$$\int \frac{\sin{\left(x \right)} \sec{\left(x \right)}}{\tan{\left(x \right)}}\, dx = x + C$$$A