Integral dari $$$- x + \left(e^{x} - 1\right) e^{- x}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$- x + \left(e^{x} - 1\right) e^{- x}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(- x + \left(e^{x} - 1\right) e^{- x}\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(- x + \left(e^{x} - 1\right) e^{- x}\right)d x}}} = {\color{red}{\left(- \int{x d x} + \int{\left(e^{x} - 1\right) e^{- x} d x}\right)}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:

$$\int{\left(e^{x} - 1\right) e^{- x} d x} - {\color{red}{\int{x d x}}}=\int{\left(e^{x} - 1\right) e^{- x} d x} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\left(e^{x} - 1\right) e^{- x} d x} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Expand the expression:

$$- \frac{x^{2}}{2} + {\color{red}{\int{\left(e^{x} - 1\right) e^{- x} d x}}} = - \frac{x^{2}}{2} + {\color{red}{\int{\left(1 - e^{- x}\right)d x}}}$$

Integralkan suku demi suku:

$$- \frac{x^{2}}{2} + {\color{red}{\int{\left(1 - e^{- x}\right)d x}}} = - \frac{x^{2}}{2} + {\color{red}{\left(\int{1 d x} - \int{e^{- x} d x}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:

$$- \frac{x^{2}}{2} - \int{e^{- x} d x} + {\color{red}{\int{1 d x}}} = - \frac{x^{2}}{2} - \int{e^{- x} d x} + {\color{red}{x}}$$

Misalkan $$$u=- x$$$.

Kemudian $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = - du$$$.

Oleh karena itu,

$$- \frac{x^{2}}{2} + x - {\color{red}{\int{e^{- x} d x}}} = - \frac{x^{2}}{2} + x - {\color{red}{\int{\left(- e^{u}\right)d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=-1$$$ dan $$$f{\left(u \right)} = e^{u}$$$:

$$- \frac{x^{2}}{2} + x - {\color{red}{\int{\left(- e^{u}\right)d u}}} = - \frac{x^{2}}{2} + x - {\color{red}{\left(- \int{e^{u} d u}\right)}}$$

Integral dari fungsi eksponensial adalah $$$\int{e^{u} d u} = e^{u}$$$:

$$- \frac{x^{2}}{2} + x + {\color{red}{\int{e^{u} d u}}} = - \frac{x^{2}}{2} + x + {\color{red}{e^{u}}}$$

Ingat bahwa $$$u=- x$$$:

$$- \frac{x^{2}}{2} + x + e^{{\color{red}{u}}} = - \frac{x^{2}}{2} + x + e^{{\color{red}{\left(- x\right)}}}$$

Oleh karena itu,

$$\int{\left(- x + \left(e^{x} - 1\right) e^{- x}\right)d x} = - \frac{x^{2}}{2} + x + e^{- x}$$

Tambahkan konstanta integrasi:

$$\int{\left(- x + \left(e^{x} - 1\right) e^{- x}\right)d x} = - \frac{x^{2}}{2} + x + e^{- x}+C$$

Jawaban

$$$\int \left(- x + \left(e^{x} - 1\right) e^{- x}\right)\, dx = \left(- \frac{x^{2}}{2} + x + e^{- x}\right) + C$$$A


Please try a new game Rotatly