Integral dari $$$\left(4 x - 2\right) e^{x^{2} - x}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\left(4 x - 2\right) e^{x^{2} - x}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(4 x - 2\right) e^{x^{2} - x}\, dx$$$.

Solusi

Masukan ditulis ulang: $$$\int{\left(4 x - 2\right) e^{x^{2} - x} d x}=\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x}$$$.

Misalkan $$$u=x \left(x - 1\right)$$$.

Kemudian $$$du=\left(x \left(x - 1\right)\right)^{\prime }dx = \left(2 x - 1\right) dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\left(2 x - 1\right) dx = du$$$.

Jadi,

$${\color{red}{\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x}}} = {\color{red}{\int{2 e^{u} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=2$$$ dan $$$f{\left(u \right)} = e^{u}$$$:

$${\color{red}{\int{2 e^{u} d u}}} = {\color{red}{\left(2 \int{e^{u} d u}\right)}}$$

Integral dari fungsi eksponensial adalah $$$\int{e^{u} d u} = e^{u}$$$:

$$2 {\color{red}{\int{e^{u} d u}}} = 2 {\color{red}{e^{u}}}$$

Ingat bahwa $$$u=x \left(x - 1\right)$$$:

$$2 e^{{\color{red}{u}}} = 2 e^{{\color{red}{x \left(x - 1\right)}}}$$

Oleh karena itu,

$$\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x} = 2 e^{x \left(x - 1\right)}$$

Tambahkan konstanta integrasi:

$$\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x} = 2 e^{x \left(x - 1\right)}+C$$

Jawaban

$$$\int \left(4 x - 2\right) e^{x^{2} - x}\, dx = 2 e^{x \left(x - 1\right)} + C$$$A


Please try a new game Rotatly