Integral dari $$$\frac{1}{8 x - 3}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{1}{8 x - 3}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{1}{8 x - 3}\, dx$$$.

Solusi

Misalkan $$$u=8 x - 3$$$.

Kemudian $$$du=\left(8 x - 3\right)^{\prime }dx = 8 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{8}$$$.

Oleh karena itu,

$${\color{red}{\int{\frac{1}{8 x - 3} d x}}} = {\color{red}{\int{\frac{1}{8 u} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{8}$$$ dan $$$f{\left(u \right)} = \frac{1}{u}$$$:

$${\color{red}{\int{\frac{1}{8 u} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{8}\right)}}$$

Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$

Ingat bahwa $$$u=8 x - 3$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} = \frac{\ln{\left(\left|{{\color{red}{\left(8 x - 3\right)}}}\right| \right)}}{8}$$

Oleh karena itu,

$$\int{\frac{1}{8 x - 3} d x} = \frac{\ln{\left(\left|{8 x - 3}\right| \right)}}{8}$$

Tambahkan konstanta integrasi:

$$\int{\frac{1}{8 x - 3} d x} = \frac{\ln{\left(\left|{8 x - 3}\right| \right)}}{8}+C$$

Jawaban

$$$\int \frac{1}{8 x - 3}\, dx = \frac{\ln\left(\left|{8 x - 3}\right|\right)}{8} + C$$$A


Please try a new game Rotatly