Integral dari $$$\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)d x}}} = {\color{red}{\left(\int{\left(9 - x^{2}\right)^{2} d x} - \int{\left(x + 7\right)^{2} d x}\right)}}$$

Expand the expression:

$$- \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{\left(9 - x^{2}\right)^{2} d x}}} = - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{\left(x^{4} - 18 x^{2} + 81\right)d x}}}$$

Integralkan suku demi suku:

$$- \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{\left(x^{4} - 18 x^{2} + 81\right)d x}}} = - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\left(\int{81 d x} - \int{18 x^{2} d x} + \int{x^{4} d x}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=81$$$:

$$- \int{18 x^{2} d x} + \int{x^{4} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{81 d x}}} = - \int{18 x^{2} d x} + \int{x^{4} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\left(81 x\right)}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=4$$$:

$$81 x - \int{18 x^{2} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\int{x^{4} d x}}}=81 x - \int{18 x^{2} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=81 x - \int{18 x^{2} d x} - \int{\left(x + 7\right)^{2} d x} + {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=18$$$ dan $$$f{\left(x \right)} = x^{2}$$$:

$$\frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - {\color{red}{\int{18 x^{2} d x}}} = \frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - {\color{red}{\left(18 \int{x^{2} d x}\right)}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:

$$\frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - 18 {\color{red}{\int{x^{2} d x}}}=\frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - 18 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\frac{x^{5}}{5} + 81 x - \int{\left(x + 7\right)^{2} d x} - 18 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Misalkan $$$u=x + 7$$$.

Kemudian $$$du=\left(x + 7\right)^{\prime }dx = 1 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = du$$$.

Dengan demikian,

$$\frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\int{\left(x + 7\right)^{2} d x}}} = \frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\int{u^{2} d u}}}$$

Terapkan aturan pangkat $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:

$$\frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\int{u^{2} d u}}}=\frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=\frac{x^{5}}{5} - 6 x^{3} + 81 x - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

Ingat bahwa $$$u=x + 7$$$:

$$\frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{{\color{red}{u}}^{3}}{3} = \frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{{\color{red}{\left(x + 7\right)}}^{3}}{3}$$

Oleh karena itu,

$$\int{\left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)d x} = \frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{\left(x + 7\right)^{3}}{3}$$

Tambahkan konstanta integrasi:

$$\int{\left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)d x} = \frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{\left(x + 7\right)^{3}}{3}+C$$

Jawaban

$$$\int \left(\left(9 - x^{2}\right)^{2} - \left(x + 7\right)^{2}\right)\, dx = \left(\frac{x^{5}}{5} - 6 x^{3} + 81 x - \frac{\left(x + 7\right)^{3}}{3}\right) + C$$$A


Please try a new game Rotatly