Integral dari $$$\frac{5}{\sqrt{9 - 4 x^{2}}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{5}{\sqrt{9 - 4 x^{2}}}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=5$$$ dan $$$f{\left(x \right)} = \frac{1}{\sqrt{9 - 4 x^{2}}}$$$:
$${\color{red}{\int{\frac{5}{\sqrt{9 - 4 x^{2}}} d x}}} = {\color{red}{\left(5 \int{\frac{1}{\sqrt{9 - 4 x^{2}}} d x}\right)}}$$
Misalkan $$$x=\frac{3 \sin{\left(u \right)}}{2}$$$.
Maka $$$dx=\left(\frac{3 \sin{\left(u \right)}}{2}\right)^{\prime }du = \frac{3 \cos{\left(u \right)}}{2} du$$$ (langkah-langkah dapat dilihat »).
Selain itu, berlaku $$$u=\operatorname{asin}{\left(\frac{2 x}{3} \right)}$$$.
Jadi,
$$$\frac{1}{\sqrt{9 - 4 x^{2}}} = \frac{1}{\sqrt{9 - 9 \sin^{2}{\left( u \right)}}}$$$
Gunakan identitas $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{9 - 9 \sin^{2}{\left( u \right)}}}=\frac{1}{3 \sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{3 \sqrt{\cos^{2}{\left( u \right)}}}$$$
Dengan asumsi bahwa $$$\cos{\left( u \right)} \ge 0$$$, diperoleh sebagai berikut:
$$$\frac{1}{3 \sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{3 \cos{\left( u \right)}}$$$
Dengan demikian,
$$5 {\color{red}{\int{\frac{1}{\sqrt{9 - 4 x^{2}}} d x}}} = 5 {\color{red}{\int{\frac{1}{2} d u}}}$$
Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=\frac{1}{2}$$$:
$$5 {\color{red}{\int{\frac{1}{2} d u}}} = 5 {\color{red}{\left(\frac{u}{2}\right)}}$$
Ingat bahwa $$$u=\operatorname{asin}{\left(\frac{2 x}{3} \right)}$$$:
$$\frac{5 {\color{red}{u}}}{2} = \frac{5 {\color{red}{\operatorname{asin}{\left(\frac{2 x}{3} \right)}}}}{2}$$
Oleh karena itu,
$$\int{\frac{5}{\sqrt{9 - 4 x^{2}}} d x} = \frac{5 \operatorname{asin}{\left(\frac{2 x}{3} \right)}}{2}$$
Tambahkan konstanta integrasi:
$$\int{\frac{5}{\sqrt{9 - 4 x^{2}}} d x} = \frac{5 \operatorname{asin}{\left(\frac{2 x}{3} \right)}}{2}+C$$
Jawaban
$$$\int \frac{5}{\sqrt{9 - 4 x^{2}}}\, dx = \frac{5 \operatorname{asin}{\left(\frac{2 x}{3} \right)}}{2} + C$$$A