Integral dari $$$\left(3 x - 4\right)^{5}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\left(3 x - 4\right)^{5}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(3 x - 4\right)^{5}\, dx$$$.

Solusi

Misalkan $$$u=3 x - 4$$$.

Kemudian $$$du=\left(3 x - 4\right)^{\prime }dx = 3 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{3}$$$.

Oleh karena itu,

$${\color{red}{\int{\left(3 x - 4\right)^{5} d x}}} = {\color{red}{\int{\frac{u^{5}}{3} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{3}$$$ dan $$$f{\left(u \right)} = u^{5}$$$:

$${\color{red}{\int{\frac{u^{5}}{3} d u}}} = {\color{red}{\left(\frac{\int{u^{5} d u}}{3}\right)}}$$

Terapkan aturan pangkat $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=5$$$:

$$\frac{{\color{red}{\int{u^{5} d u}}}}{3}=\frac{{\color{red}{\frac{u^{1 + 5}}{1 + 5}}}}{3}=\frac{{\color{red}{\left(\frac{u^{6}}{6}\right)}}}{3}$$

Ingat bahwa $$$u=3 x - 4$$$:

$$\frac{{\color{red}{u}}^{6}}{18} = \frac{{\color{red}{\left(3 x - 4\right)}}^{6}}{18}$$

Oleh karena itu,

$$\int{\left(3 x - 4\right)^{5} d x} = \frac{\left(3 x - 4\right)^{6}}{18}$$

Tambahkan konstanta integrasi:

$$\int{\left(3 x - 4\right)^{5} d x} = \frac{\left(3 x - 4\right)^{6}}{18}+C$$

Jawaban

$$$\int \left(3 x - 4\right)^{5}\, dx = \frac{\left(3 x - 4\right)^{6}}{18} + C$$$A


Please try a new game Rotatly