Integral dari $$$\frac{x^{6} - 1}{x^{2} + 1}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{x^{6} - 1}{x^{2} + 1}\, dx$$$.
Solusi
Karena derajat pembilang tidak kurang dari derajat penyebut, lakukan pembagian panjang polinom (langkah-langkah dapat dilihat »):
$${\color{red}{\int{\frac{x^{6} - 1}{x^{2} + 1} d x}}} = {\color{red}{\int{\left(x^{4} - x^{2} + 1 - \frac{2}{x^{2} + 1}\right)d x}}}$$
Integralkan suku demi suku:
$${\color{red}{\int{\left(x^{4} - x^{2} + 1 - \frac{2}{x^{2} + 1}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{x^{2} d x} + \int{x^{4} d x} - \int{\frac{2}{x^{2} + 1} d x}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:
$$- \int{x^{2} d x} + \int{x^{4} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{\int{1 d x}}} = - \int{x^{2} d x} + \int{x^{4} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{x}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=4$$$:
$$x - \int{x^{2} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{\int{x^{4} d x}}}=x - \int{x^{2} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=x - \int{x^{2} d x} - \int{\frac{2}{x^{2} + 1} d x} + {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:
$$\frac{x^{5}}{5} + x - \int{\frac{2}{x^{2} + 1} d x} - {\color{red}{\int{x^{2} d x}}}=\frac{x^{5}}{5} + x - \int{\frac{2}{x^{2} + 1} d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\frac{x^{5}}{5} + x - \int{\frac{2}{x^{2} + 1} d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=2$$$ dan $$$f{\left(x \right)} = \frac{1}{x^{2} + 1}$$$:
$$\frac{x^{5}}{5} - \frac{x^{3}}{3} + x - {\color{red}{\int{\frac{2}{x^{2} + 1} d x}}} = \frac{x^{5}}{5} - \frac{x^{3}}{3} + x - {\color{red}{\left(2 \int{\frac{1}{x^{2} + 1} d x}\right)}}$$
Integral dari $$$\frac{1}{x^{2} + 1}$$$ adalah $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:
$$\frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = \frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 {\color{red}{\operatorname{atan}{\left(x \right)}}}$$
Oleh karena itu,
$$\int{\frac{x^{6} - 1}{x^{2} + 1} d x} = \frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 \operatorname{atan}{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{x^{6} - 1}{x^{2} + 1} d x} = \frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 \operatorname{atan}{\left(x \right)}+C$$
Jawaban
$$$\int \frac{x^{6} - 1}{x^{2} + 1}\, dx = \left(\frac{x^{5}}{5} - \frac{x^{3}}{3} + x - 2 \operatorname{atan}{\left(x \right)}\right) + C$$$A