Integral dari $$$\frac{e^{2 x}}{e^{x} + 1}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{e^{2 x}}{e^{x} + 1}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{e^{2 x}}{e^{x} + 1}\, dx$$$.

Solusi

Misalkan $$$u=e^{x}$$$.

Kemudian $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$e^{x} dx = du$$$.

Dengan demikian,

$${\color{red}{\int{\frac{e^{2 x}}{e^{x} + 1} d x}}} = {\color{red}{\int{\frac{u}{u + 1} d u}}}$$

Tulis ulang dan pisahkan pecahannya:

$${\color{red}{\int{\frac{u}{u + 1} d u}}} = {\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}}$$

Integralkan suku demi suku:

$${\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u + 1} d u}\right)}}$$

Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=1$$$:

$$- \int{\frac{1}{u + 1} d u} + {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u + 1} d u} + {\color{red}{u}}$$

Misalkan $$$v=u + 1$$$.

Kemudian $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$du = dv$$$.

Integral tersebut dapat ditulis ulang sebagai

$$u - {\color{red}{\int{\frac{1}{u + 1} d u}}} = u - {\color{red}{\int{\frac{1}{v} d v}}}$$

Integral dari $$$\frac{1}{v}$$$ adalah $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$u - {\color{red}{\int{\frac{1}{v} d v}}} = u - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

Ingat bahwa $$$v=u + 1$$$:

$$u - \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = u - \ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}$$

Ingat bahwa $$$u=e^{x}$$$:

$$- \ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)} + {\color{red}{u}} = - \ln{\left(\left|{1 + {\color{red}{e^{x}}}}\right| \right)} + {\color{red}{e^{x}}}$$

Oleh karena itu,

$$\int{\frac{e^{2 x}}{e^{x} + 1} d x} = e^{x} - \ln{\left(e^{x} + 1 \right)}$$

Tambahkan konstanta integrasi:

$$\int{\frac{e^{2 x}}{e^{x} + 1} d x} = e^{x} - \ln{\left(e^{x} + 1 \right)}+C$$

Jawaban

$$$\int \frac{e^{2 x}}{e^{x} + 1}\, dx = \left(e^{x} - \ln\left(e^{x} + 1\right)\right) + C$$$A


Please try a new game Rotatly