Integral dari $$$\frac{e^{2 x}}{e^{x} + 1}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{e^{2 x}}{e^{x} + 1}\, dx$$$.
Solusi
Misalkan $$$u=e^{x}$$$.
Kemudian $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$e^{x} dx = du$$$.
Dengan demikian,
$${\color{red}{\int{\frac{e^{2 x}}{e^{x} + 1} d x}}} = {\color{red}{\int{\frac{u}{u + 1} d u}}}$$
Tulis ulang dan pisahkan pecahannya:
$${\color{red}{\int{\frac{u}{u + 1} d u}}} = {\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}}$$
Integralkan suku demi suku:
$${\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u + 1} d u}\right)}}$$
Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=1$$$:
$$- \int{\frac{1}{u + 1} d u} + {\color{red}{\int{1 d u}}} = - \int{\frac{1}{u + 1} d u} + {\color{red}{u}}$$
Misalkan $$$v=u + 1$$$.
Kemudian $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$du = dv$$$.
Integral tersebut dapat ditulis ulang sebagai
$$u - {\color{red}{\int{\frac{1}{u + 1} d u}}} = u - {\color{red}{\int{\frac{1}{v} d v}}}$$
Integral dari $$$\frac{1}{v}$$$ adalah $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$u - {\color{red}{\int{\frac{1}{v} d v}}} = u - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Ingat bahwa $$$v=u + 1$$$:
$$u - \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = u - \ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}$$
Ingat bahwa $$$u=e^{x}$$$:
$$- \ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)} + {\color{red}{u}} = - \ln{\left(\left|{1 + {\color{red}{e^{x}}}}\right| \right)} + {\color{red}{e^{x}}}$$
Oleh karena itu,
$$\int{\frac{e^{2 x}}{e^{x} + 1} d x} = e^{x} - \ln{\left(e^{x} + 1 \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{e^{2 x}}{e^{x} + 1} d x} = e^{x} - \ln{\left(e^{x} + 1 \right)}+C$$
Jawaban
$$$\int \frac{e^{2 x}}{e^{x} + 1}\, dx = \left(e^{x} - \ln\left(e^{x} + 1\right)\right) + C$$$A