Turunan kedua dari $$$x^{3}$$$
Kalkulator terkait: Kalkulator Turunan, Kalkulator Diferensiasi Logaritmik
Masukan Anda
Temukan $$$\frac{d^{2}}{dx^{2}} \left(x^{3}\right)$$$.
Solusi
Tentukan turunan pertama $$$\frac{d}{dx} \left(x^{3}\right)$$$
Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 3$$$:
$${\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} = {\color{red}\left(3 x^{2}\right)}$$Dengan demikian, $$$\frac{d}{dx} \left(x^{3}\right) = 3 x^{2}$$$.
Selanjutnya, $$$\frac{d^{2}}{dx^{2}} \left(x^{3}\right) = \frac{d}{dx} \left(3 x^{2}\right)$$$
Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$c = 3$$$ dan $$$f{\left(x \right)} = x^{2}$$$:
$${\color{red}\left(\frac{d}{dx} \left(3 x^{2}\right)\right)} = {\color{red}\left(3 \frac{d}{dx} \left(x^{2}\right)\right)}$$Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 2$$$:
$$3 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = 3 {\color{red}\left(2 x\right)}$$Dengan demikian, $$$\frac{d}{dx} \left(3 x^{2}\right) = 6 x$$$.
Oleh karena itu, $$$\frac{d^{2}}{dx^{2}} \left(x^{3}\right) = 6 x$$$.
Jawaban
$$$\frac{d^{2}}{dx^{2}} \left(x^{3}\right) = 6 x$$$A