$$$\frac{\sqrt{10}}{10}\cdot \left\langle 1, - 3 \sin{\left(t \right)}, 3 \cos{\left(t \right)}\right\rangle$$$
Votre saisie
Calculer $$$\frac{\sqrt{10}}{10}\cdot \left\langle 1, - 3 \sin{\left(t \right)}, 3 \cos{\left(t \right)}\right\rangle$$$.
Solution
Multipliez chaque coordonnée du vecteur par le scalaire :
$$${\color{Fuchsia}\left(\frac{\sqrt{10}}{10}\right)}\cdot \left\langle 1, - 3 \sin{\left(t \right)}, 3 \cos{\left(t \right)}\right\rangle = \left\langle {\color{Fuchsia}\left(\frac{\sqrt{10}}{10}\right)}\cdot \left(1\right), {\color{Fuchsia}\left(\frac{\sqrt{10}}{10}\right)}\cdot \left(- 3 \sin{\left(t \right)}\right), {\color{Fuchsia}\left(\frac{\sqrt{10}}{10}\right)}\cdot \left(3 \cos{\left(t \right)}\right)\right\rangle = \left\langle \frac{\sqrt{10}}{10}, - \frac{3 \sqrt{10} \sin{\left(t \right)}}{10}, \frac{3 \sqrt{10} \cos{\left(t \right)}}{10}\right\rangle$$$
Réponse
$$$\frac{\sqrt{10}}{10}\cdot \left\langle 1, - 3 \sin{\left(t \right)}, 3 \cos{\left(t \right)}\right\rangle = \left\langle \frac{\sqrt{10}}{10}, - \frac{3 \sqrt{10} \sin{\left(t \right)}}{10}, \frac{3 \sqrt{10} \cos{\left(t \right)}}{10}\right\rangle\approx \left\langle 0.316227766016838, - 0.948683298050514 \sin{\left(t \right)}, 0.948683298050514 \cos{\left(t \right)}\right\rangle$$$A