Norme de $$$\left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$
Votre saisie
Trouvez la norme (longueur) de $$$\mathbf{\vec{u}} = \left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$.
Solution
La norme d'un vecteur est donnée par la formule $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.
La somme des carrés des valeurs absolues des coordonnées est $$$\left|{\frac{\sqrt{2}}{2 \sqrt{t}}}\right|^{2} + \left|{e^{t}}\right|^{2} + \left|{- e^{- t}}\right|^{2} = e^{2 t} + \frac{1}{2 \left|{\sqrt{t}}\right|^{2}} + e^{- 2 t}.$$$
Par conséquent, la norme du vecteur est $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{e^{2 t} + \frac{1}{2 \left|{\sqrt{t}}\right|^{2}} + e^{- 2 t}} = \sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}.$$$
Réponse
La norme est $$$\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}} = \left(e^{2 t} + \frac{0.5}{\left|{t}\right|} + e^{- 2 t}\right)^{0.5}$$$A.