Norme de $$$\left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$
Votre saisie
Trouvez la norme (longueur) de $$$\mathbf{\vec{u}} = \left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$.
Solution
La norme d'un vecteur est donnée par la formule $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.
La somme des carrés des valeurs absolues des coordonnées est $$$\left|{4 \cos{\left(2 t \right)}}\right|^{2} + \left|{- 4 \sin{\left(2 t \right)}}\right|^{2} + \left|{-8}\right|^{2} = 16 \sin^{2}{\left(2 t \right)} + 16 \cos^{2}{\left(2 t \right)} + 64.$$$
Par conséquent, la norme du vecteur est $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{16 \sin^{2}{\left(2 t \right)} + 16 \cos^{2}{\left(2 t \right)} + 64} = 4 \sqrt{5}.$$$
Réponse
La norme est $$$4 \sqrt{5}\approx 8.944271909999159$$$A.