Vecteur unitaire dans la direction de $$$\left\langle 3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}, - 3 \sin{\left(t \right)} \cos^{2}{\left(t \right)}, \sin{\left(2 t \right)}\right\rangle$$$
Votre saisie
Trouvez le vecteur unitaire dans la direction de $$$\mathbf{\vec{u}} = \left\langle 3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}, - 3 \sin{\left(t \right)} \cos^{2}{\left(t \right)}, \sin{\left(2 t \right)}\right\rangle.$$$
Solution
La norme du vecteur est $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \frac{\sqrt{26 - 26 \cos{\left(4 t \right)}}}{4}$$$ (pour les étapes, voir la calculatrice de norme).
Le vecteur unitaire est obtenu en divisant chaque coordonnée du vecteur donné par sa norme.
Ainsi, le vecteur unitaire est $$$\mathbf{\vec{e}} = \left\langle \frac{6 \sqrt{26} \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, - \frac{6 \sqrt{26} \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, \frac{2 \sqrt{26} \sin{\left(2 t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}\right\rangle$$$ (pour les étapes, voir calculatrice de multiplication d'un vecteur par un scalaire).
Réponse
Le vecteur unitaire dans la direction de $$$\left\langle 3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}, - 3 \sin{\left(t \right)} \cos^{2}{\left(t \right)}, \sin{\left(2 t \right)}\right\rangle$$$A est $$$\left\langle \frac{6 \sqrt{26} \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, - \frac{6 \sqrt{26} \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, \frac{2 \sqrt{26} \sin{\left(2 t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}\right\rangle\approx \left\langle \frac{2.353393621658208 \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{\left(1 - \cos{\left(4 t \right)}\right)^{0.5}}, - \frac{2.353393621658208 \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{\left(1 - \cos{\left(4 t \right)}\right)^{0.5}}, \frac{0.784464540552736 \sin{\left(2 t \right)}}{\left(1 - \cos{\left(4 t \right)}\right)^{0.5}}\right\rangle.$$$A