Calculatrice Wronskienne

La calculatrice trouvera le Wronskian de l'ensemble de fonctions, avec les étapes indiquées. Prend en charge jusqu'à 5 fonctions, 2x2, 3x3, etc.

Séparées par des virgules.

Si la calculatrice n'a pas calculé quelque chose ou si vous avez identifié une erreur, ou si vous avez une suggestion/un commentaire, veuillez l'écrire dans les commentaires ci-dessous.

Votre entrée

Calculer le Wronskian des $$$\left\{f_{1} = \cos{\left(x \right)}, f_{2} = \sin{\left(x \right)}, f_{3} = \sin{\left(2 x \right)}\right\}$$$.

Solution

Le Wronskien est donné par le déterminant suivant : $$$W{\left(f_{1},f_{2},f_{3} \right)}\left(x\right) = \left|\begin{array}{ccc}f_{1}\left(x\right) & f_{2}\left(x\right) & f_{3}\left(x\right)\\f_{1}^{\prime}\left(x\right) & f_{2}^{\prime}\left(x\right) & f_{3}^{\prime}\left(x\right)\\f_{1}^{\prime\prime}\left(x\right) & f_{2}^{\prime\prime}\left(x\right) & f_{3}^{\prime\prime}\left(x\right)\end{array}\right|.$$$

Dans notre cas, l' $$$W{\left(f_{1},f_{2},f_{3} \right)}\left(x\right) = \left|\begin{array}{ccc}\cos{\left(x \right)} & \sin{\left(x \right)} & \sin{\left(2 x \right)}\\\left(\cos{\left(x \right)}\right)^{\prime } & \left(\sin{\left(x \right)}\right)^{\prime } & \left(\sin{\left(2 x \right)}\right)^{\prime }\\\left(\cos{\left(x \right)}\right)^{\prime \prime } & \left(\sin{\left(x \right)}\right)^{\prime \prime } & \left(\sin{\left(2 x \right)}\right)^{\prime \prime }\end{array}\right|.$$$

Trouvez les dérivées (pour les étapes, voir calculatrice de dérivées): $$$W{\left(f_{1},f_{2},f_{3} \right)}\left(x\right) = \left|\begin{array}{ccc}\cos{\left(x \right)} & \sin{\left(x \right)} & \sin{\left(2 x \right)}\\- \sin{\left(x \right)} & \cos{\left(x \right)} & 2 \cos{\left(2 x \right)}\\- \cos{\left(x \right)} & - \sin{\left(x \right)} & - 4 \sin{\left(2 x \right)}\end{array}\right|.$$$

Trouvez le déterminant (pour les étapes, voir calculateur de déterminant) : $$$\left|\begin{array}{ccc}\cos{\left(x \right)} & \sin{\left(x \right)} & \sin{\left(2 x \right)}\\- \sin{\left(x \right)} & \cos{\left(x \right)} & 2 \cos{\left(2 x \right)}\\- \cos{\left(x \right)} & - \sin{\left(x \right)} & - 4 \sin{\left(2 x \right)}\end{array}\right| = - 3 \sin{\left(2 x \right)}.$$$

Réponse

$$$- 3 \sin{\left(2 x \right)}$$$A est égal à Wronskian.