$$$\sum_{n=0}^{\infty} \frac{1}{\left(\left(2 n + 1\right)^{2} - 4\right)^{2}}$$$

La calculatrice tentera de calculer la somme $$$\sum_{n=0}^{\infty} \frac{1}{\left(\left(2 n + 1\right)^{2} - 4\right)^{2}}$$$ ou indiquera si la série est convergente, avec les étapes affichées.
Laissez vide pour l'autodétection.
If you need a binomial coefficient $$$C(n,k) = {\binom{n}{k}}$$$, type binomial(n,k).
If you need a factorial $$$n!$$$, type factorial(n).

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\sum_{n=0}^{\infty} \frac{1}{\left(\left(2 n + 1\right)^{2} - 4\right)^{2}}$$$.

Solution

Perform partial fraction decomposition (for steps, see partial fraction decomposition calculator)::

$${\color{red}{\left(\sum_{n=0}^{\infty} \frac{1}{\left(\left(2 n + 1\right)^{2} - 4\right)^{2}}\right)}}={\color{red}{\left(\sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} + \frac{1}{16 \left(2 n + 3\right)^{2}} - \frac{1}{32 \left(2 n - 1\right)} + \frac{1}{16 \left(2 n - 1\right)^{2}}\right)\right)}}$$

Split the series:

$${\color{red}{\left(\sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} + \frac{1}{16 \left(2 n + 3\right)^{2}} - \frac{1}{32 \left(2 n - 1\right)} + \frac{1}{16 \left(2 n - 1\right)^{2}}\right)\right)}}={\color{red}{\left(\sum_{n=0}^{\infty} \frac{1}{16 \left(2 n - 1\right)^{2}} + \sum_{n=0}^{\infty} \frac{1}{16 \left(2 n + 3\right)^{2}} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)\right)}}$$

Pull the constant out of the series:

$${\color{red}{\left(\sum_{n=0}^{\infty} \frac{1}{16 \left(2 n - 1\right)^{2}}\right)}} + \sum_{n=0}^{\infty} \frac{1}{16 \left(2 n + 3\right)^{2}} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)={\color{red}{\left(\frac{\sum_{n=0}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}}}{16}\right)}} + \sum_{n=0}^{\infty} \frac{1}{16 \left(2 n + 3\right)^{2}} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)$$

Split the series:

$$\frac{{\color{red}{\left(\sum_{n=0}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}}\right)}}}{16} + \sum_{n=0}^{\infty} \frac{1}{16 \left(2 n + 3\right)^{2}} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)=\frac{{\color{red}{\left(\sum_{n=0}^{0} \frac{1}{\left(2 n - 1\right)^{2}} + \sum_{n=1}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}}\right)}}}{16} + \sum_{n=0}^{\infty} \frac{1}{16 \left(2 n + 3\right)^{2}} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)$$

Since the bounds are finite, the number of terms is finite as well, and we just calculate the sum by summing up the terms.

$$\frac{{\color{red}{\left(\sum_{n=0}^{0} \frac{1}{\left(2 n - 1\right)^{2}}\right)}}}{16} + \frac{\sum_{n=1}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}}}{16} + \sum_{n=0}^{\infty} \frac{1}{16 \left(2 n + 3\right)^{2}} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)=\frac{{\color{red}{1}}}{16} + \frac{\sum_{n=1}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}}}{16} + \sum_{n=0}^{\infty} \frac{1}{16 \left(2 n + 3\right)^{2}} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)$$

$$$\sum_{n=1}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}}$$$ is a known series.

It is $$$\sum_{n=1}^{\infty} \left(2 n - 1\right)^{- n_{0}}=\left(1 - 2^{- n_{0}}\right) \zeta\left(n_{0}\right)$$$, $$$n_{0} > 1$$$ with $$$n_{0}=2$$$.

Therefore,

$$\frac{1}{16} + \frac{{\color{red}{\left(\sum_{n=1}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}}\right)}}}{16} + \sum_{n=0}^{\infty} \frac{1}{16 \left(2 n + 3\right)^{2}} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)=\frac{1}{16} + \frac{{\color{red}{\left(\frac{\pi^{2}}{8}\right)}}}{16} + \sum_{n=0}^{\infty} \frac{1}{16 \left(2 n + 3\right)^{2}} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)$$

Shift the series by $$$2$$$:

$$\frac{1}{16} + \frac{\pi^{2}}{128} + {\color{red}{\left(\sum_{n=0}^{\infty} \frac{1}{16 \left(2 n + 3\right)^{2}}\right)}} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)=\frac{1}{16} + \frac{\pi^{2}}{128} + {\color{red}{\left(\sum_{n=2}^{\infty} \frac{1}{16 \left(2 n - 1\right)^{2}}\right)}} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)$$

Pull the constant out of the series:

$$\frac{1}{16} + \frac{\pi^{2}}{128} + {\color{red}{\left(\sum_{n=2}^{\infty} \frac{1}{16 \left(2 n - 1\right)^{2}}\right)}} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)=\frac{1}{16} + \frac{\pi^{2}}{128} + {\color{red}{\left(\frac{\sum_{n=2}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}}}{16}\right)}} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)$$

Split the series:

$$\frac{1}{16} + \frac{{\color{red}{\left(\sum_{n=2}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}}\right)}}}{16} + \frac{\pi^{2}}{128} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)=\frac{1}{16} + \frac{{\color{red}{\left(\sum_{n=1}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}} + \sum_{n=1}^{1} - \frac{1}{\left(2 n - 1\right)^{2}}\right)}}}{16} + \frac{\pi^{2}}{128} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)$$

Since the bounds are finite, the number of terms is finite as well, and we just calculate the sum by summing up the terms.

$$\frac{1}{16} + \frac{{\color{red}{\left(\sum_{n=1}^{1} - \frac{1}{\left(2 n - 1\right)^{2}}\right)}}}{16} + \frac{\sum_{n=1}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}}}{16} + \frac{\pi^{2}}{128} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)=\frac{1}{16} + \frac{{\color{red}{\left(-1\right)}}}{16} + \frac{\sum_{n=1}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}}}{16} + \frac{\pi^{2}}{128} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)$$

$$$\sum_{n=1}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}}$$$ is a known series.

It is $$$\sum_{n=1}^{\infty} \left(2 n - 1\right)^{- n_{0}}=\left(1 - 2^{- n_{0}}\right) \zeta\left(n_{0}\right)$$$, $$$n_{0} > 1$$$ with $$$n_{0}=2$$$.

Therefore,

$$\frac{{\color{red}{\left(\sum_{n=1}^{\infty} \frac{1}{\left(2 n - 1\right)^{2}}\right)}}}{16} + \frac{\pi^{2}}{128} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)=\frac{{\color{red}{\left(\frac{\pi^{2}}{8}\right)}}}{16} + \frac{\pi^{2}}{128} + \sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)$$

Steps are not available for this series.

$$\frac{\pi^{2}}{64} + {\color{red}{\left(\sum_{n=0}^{\infty} \left(\frac{1}{32 \left(2 n + 3\right)} - \frac{1}{32 \left(2 n - 1\right)}\right)\right)}}=\frac{\pi^{2}}{64} + {\color{red}{\left(0\right)}}$$

Hence,

$$\sum_{n=0}^{\infty} \frac{1}{\left(\left(2 n + 1\right)^{2} - 4\right)^{2}}=\frac{\pi^{2}}{64}$$

Réponse

$$$\sum_{n=0}^{\infty} \frac{1}{\left(\left(2 n + 1\right)^{2} - 4\right)^{2}} = \frac{\pi^{2}}{64}\approx 0.154212568767021$$$A


Please try a new game Rotatly