Calculatrice de séries de Taylor et de Maclaurin (séries entières)

Calculer la série de Taylor/Maclaurin pas à pas

La calculatrice déterminera le développement en série de Taylor (ou en série entière) de la fonction donnée autour du point donné, avec les étapes affichées. Vous pouvez spécifier l’ordre du polynôme de Taylor. Si vous voulez le polynôme de Maclaurin, réglez simplement le point à $$$0$$$.

Enter a function:

Enter a point:

For Maclaurin series, set the point to `0`.

Order `n=`

Evaluate the series and find the error at the point

The point is optional.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate the Taylor (Maclaurin) series of $$$\frac{1}{x}$$$ up to $$$n=5$$$

A Maclaurin series is given by $$$f\left(x\right)=\sum\limits_{k=0}^{\infty}\frac{f^{(k)}\left(a\right)}{k!}x^k$$$

In our case, $$$f\left(x\right) \approx P\left(x\right) = \sum\limits_{k=0}^{n}\frac{f^{(k)}\left(a\right)}{k!}x^k=\sum\limits_{k=0}^{5}\frac{f^{(k)}\left(a\right)}{k!}x^k$$$

So, what we need to do to get the desired polynomial is to calculate the derivatives, evaluate them at the given point, and plug the results into the given formula.

$$$f^{(0)}\left(x\right)=f\left(x\right)=\frac{1}{x}$$$

Evaluate the function at the point: as can be seen, the function does not exist at the given point.

Answer: the Taylor (Maclaurin) series can't be found at the given point.


Please try a new game Rotatly