Calculatrice de factorisation
Factoriser des expressions pas à pas
La calculatrice tentera de factoriser toute expression (polynomiale, binomiale, trinômiale, quadratique, rationnelle, irrationnelle, exponentielle, trigonométrique, ou un mélange de celles-ci), avec les étapes affichées. Pour ce faire, on commence par appliquer certaines substitutions afin de convertir l'expression en polynôme, puis les techniques suivantes sont utilisées : mise en évidence (facteur commun), factorisation des quadratiques, groupement et regroupement, carré d'une somme/d'une différence, cube d'une somme/d'une différence, différence de carrés, somme/différence de cubes, et le théorème des racines rationnelles.
Solution
Your input: factor $$$x^{4} - 20 x^{2} + 64$$$.
We can treat $$$x^{4} - 20 x^{2} + 64$$$ as a quadratic function with respect to $$$x^{2}$$$.
Let $$$Y = x^{2}$$$.
Temporarily rewrite $$$x^{4} - 20 x^{2} + 64$$$ in terms of $$$Y$$$: $$$x^{4} - 20 x^{2} + 64$$$ becomes $$$Y^{2} - 20 Y + 64$$$.
To factor the quadratic function $$$Y^{2} - 20 Y + 64$$$, we should solve the corresponding quadratic equation $$$Y^{2} - 20 Y + 64=0$$$.
Indeed, if $$$Y_1$$$ and $$$Y_2$$$ are the roots of the quadratic equation $$$aY^2+bY+c=0$$$, then $$$aY^2+bY+c=a(Y-Y_1)(Y-Y_2)$$$.
Solve the quadratic equation $$$Y^{2} - 20 Y + 64=0$$$.
The roots are $$$Y_{1} = 16$$$, $$$Y_{2} = 4$$$ (use the quadratic equation calculator to see the steps).
Therefore, $$$Y^{2} - 20 Y + 64 = \left(Y - 16\right) \left(Y - 4\right)$$$.
Recall that $$$Y = x^{2}$$$: $$$x^{4} - 20 x^{2} + 64 = 1 \left(x^{2} - 16\right) \left(x^{2} - 4\right)$$$.
$${\color{red}{\left(x^{4} - 20 x^{2} + 64\right)}} = {\color{red}{1 \left(x^{2} - 16\right) \left(x^{2} - 4\right)}}$$
Apply the difference of squares formula $$$\alpha^{2} - \beta^{2} = \left(\alpha - \beta\right) \left(\alpha + \beta\right)$$$ with $$$\alpha = x$$$ and $$$\beta = 2$$$:
$$\left(x^{2} - 16\right) {\color{red}{\left(x^{2} - 4\right)}} = \left(x^{2} - 16\right) {\color{red}{\left(x - 2\right) \left(x + 2\right)}}$$
Apply the difference of squares formula $$$\alpha^{2} - \beta^{2} = \left(\alpha - \beta\right) \left(\alpha + \beta\right)$$$ with $$$\alpha = x$$$ and $$$\beta = 4$$$:
$$\left(x - 2\right) \left(x + 2\right) {\color{red}{\left(x^{2} - 16\right)}} = \left(x - 2\right) \left(x + 2\right) {\color{red}{\left(x - 4\right) \left(x + 4\right)}}$$
Thus, $$$x^{4} - 20 x^{2} + 64=\left(x - 4\right) \left(x - 2\right) \left(x + 2\right) \left(x + 4\right)$$$.
Answer: $$$x^{4} - 20 x^{2} + 64=\left(x - 4\right) \left(x - 2\right) \left(x + 2\right) \left(x + 4\right)$$$.