Diviser $$$x^{3}$$$ par $$$x^{2} - 9$$$
Calculatrices associées: Calculatrice de division synthétique, Calculatrice de division posée
Votre saisie
Trouvez $$$\frac{x^{3}}{x^{2} - 9}$$$ en utilisant la division longue.
Solution
Saisissez le problème au format spécial (les termes manquants sont écrits avec des coefficients nuls) :
$$$\begin{array}{r|r}\hline\\x^{2}-9&x^{3}+0 x^{2}+0 x+0\end{array}$$$
Étape 1
Divisez le terme de plus haut degré du dividende par le terme de plus haut degré du diviseur : $$$\frac{x^{3}}{x^{2}} = x$$$.
Inscrivez le résultat calculé dans la partie supérieure du tableau.
Multipliez-le par le diviseur : $$$x \left(x^{2}-9\right) = x^{3}- 9 x$$$.
Soustrayez le dividende du résultat obtenu: $$$\left(x^{3}\right) - \left(x^{3}- 9 x\right) = 9 x$$$.
$$\begin{array}{r|rrrr:c}&{\color{DarkCyan}x}&&&&\\\hline\\{\color{Magenta}x^{2}}-9&{\color{DarkCyan}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{DarkCyan}x^{3}}}{{\color{Magenta}x^{2}}} = {\color{DarkCyan}x}\\&-\phantom{x^{3}}&&&&\\&x^{3}&+0 x^{2}&- 9 x&&{\color{DarkCyan}x} \left(x^{2}-9\right) = x^{3}- 9 x\\\hline\\&&&9 x&+0&\end{array}$$Comme le degré du reste est inférieur à celui du diviseur, la division est terminée.
Le tableau résultant est affiché à nouveau :
$$\begin{array}{r|rrrr:c}&{\color{DarkCyan}x}&&&&\text{Indications}\\\hline\\{\color{Magenta}x^{2}}-9&{\color{DarkCyan}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{DarkCyan}x^{3}}}{{\color{Magenta}x^{2}}} = {\color{DarkCyan}x}\\&-\phantom{x^{3}}&&&&\\&x^{3}&+0 x^{2}&- 9 x&&{\color{DarkCyan}x} \left(x^{2}-9\right) = x^{3}- 9 x\\\hline\\&&&9 x&+0&\end{array}$$Donc, $$$\frac{x^{3}}{x^{2} - 9} = x + \frac{9 x}{x^{2} - 9}$$$.
Réponse
$$$\frac{x^{3}}{x^{2} - 9} = x + \frac{9 x}{x^{2} - 9}$$$A