Luvun $$$1128$$$ alkutekijähajotelma

Laskin laskee luvun $$$1128$$$ alkutekijähajotelman ja näyttää vaiheet.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Etsi $$$1128$$$:n alkutekijähajotelma.

Ratkaisu

Aloita luvusta $$$2$$$.

Määritä, onko $$$1128$$$ jaollinen luvulla $$$2$$$.

Se on jaollinen, joten jaa $$$1128$$$ luvulla $$${\color{green}2}$$$: $$$\frac{1128}{2} = {\color{red}564}$$$.

Määritä, onko $$$564$$$ jaollinen luvulla $$$2$$$.

Se on jaollinen, joten jaa $$$564$$$ luvulla $$${\color{green}2}$$$: $$$\frac{564}{2} = {\color{red}282}$$$.

Määritä, onko $$$282$$$ jaollinen luvulla $$$2$$$.

Se on jaollinen, joten jaa $$$282$$$ luvulla $$${\color{green}2}$$$: $$$\frac{282}{2} = {\color{red}141}$$$.

Määritä, onko $$$141$$$ jaollinen luvulla $$$2$$$.

Koska se ei ole jaollinen, siirry seuraavaan alkulukuun.

Seuraava alkuluku on $$$3$$$.

Määritä, onko $$$141$$$ jaollinen luvulla $$$3$$$.

Se on jaollinen, joten jaa $$$141$$$ luvulla $$${\color{green}3}$$$: $$$\frac{141}{3} = {\color{red}47}$$$.

Alkuluku $$${\color{green}47}$$$ ei ole jaollinen muilla luvuilla kuin $$$1$$$ ja $$${\color{green}47}$$$: $$$\frac{47}{47} = {\color{red}1}$$$.

Koska olemme saaneet $$$1$$$, olemme valmiit.

Laske nyt vain tekijöiden (vihreiden lukujen) esiintymiskerrat ja kirjoita alkutekijähajotelma: $$$1128 = 2^{3} \cdot 3 \cdot 47$$$

Vastaus

Alkutekijähajotelma on $$$1128 = 2^{3} \cdot 3 \cdot 47$$$A.


Please try a new game Rotatly