Murtoluvusta desimaaliluvuksi -laskin
Muunna murtoluvut desimaaliluvuiksi vaiheittain
Laskin muuntaa annetun murtoluvun (aidon tai epäaidon) tai sekaluvun desimaalimuotoon (mahdollisesti jaksolliseen) ja näyttää välivaiheet.
Solution
Your input: convert $$$\frac{600}{40}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{1}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\40&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}6&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$40$$$'s are in $$$6$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$6-40 \cdot 0 = 6 - 0= 6$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\color{Red}{0}&\phantom{1}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{40}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}\color{Red}{6}& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$40$$$'s are in $$$60$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$60-40 \cdot 1 = 60 - 40= 20$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&\color{DarkBlue}{1}&\phantom{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{40}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}6&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkBlue}{6}&\color{DarkBlue}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}4&0&\phantom{.}\\\hline\phantom{lll}2&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$40$$$'s are in $$$200$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$200-40 \cdot 5 = 200 - 200= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&1&\color{OrangeRed}{5}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{40}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}6&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}4&0&\phantom{.}\\\hline\phantom{lll}\color{OrangeRed}{2}&\color{OrangeRed}{0}&\color{OrangeRed}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}2&0&0&\phantom{.}\\\hline\phantom{lll}&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$40$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-40 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&1&5&.&\color{Fuchsia}{0}\end{array}&\\\color{Magenta}{40}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}6&0&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}4&0&\phantom{.}\\\hline\phantom{lll}2&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}2&0&0&\phantom{.}\\\hline\phantom{lll}&&\color{Fuchsia}{0}&\phantom{.}&\color{Fuchsia}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&0\\\hline\phantom{lll}&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{600}{40}=15.0$$$
Answer: $$$\frac{600}{40}=15.0$$$