Murtoluvusta desimaaliluvuksi -laskin
Muunna murtoluvut desimaaliluvuiksi vaiheittain
Laskin muuntaa annetun murtoluvun (aidon tai epäaidon) tai sekaluvun desimaalimuotoon (mahdollisesti jaksolliseen) ja näyttää välivaiheet.
Solution
Your input: convert $$$\frac{1700}{33}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{5}&\phantom{1}&\phantom{.}&\phantom{5}&\phantom{1}&\phantom{5}&\phantom{1}\end{array}&\\33&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&7&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$33$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-33 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}\color{SaddleBrown}{0}&\phantom{0}&\phantom{5}&\phantom{1}&\phantom{.}&\phantom{5}&\phantom{1}&\phantom{5}&\phantom{1}\end{array}&\\\color{Magenta}{33}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}\color{SaddleBrown}{1}& 7 \downarrow&0&0&.&0&0&0&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$33$$$'s are in $$$17$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$17-33 \cdot 0 = 17 - 0= 17$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&\color{Brown}{0}&\phantom{5}&\phantom{1}&\phantom{.}&\phantom{5}&\phantom{1}&\phantom{5}&\phantom{1}\end{array}&\\\color{Magenta}{33}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&7& 0 \downarrow&0&.&0&0&0&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Brown}{1}&\color{Brown}{7}&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$33$$$'s are in $$$170$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$170-33 \cdot 5 = 170 - 165= 5$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&0&\color{DarkCyan}{5}&\phantom{1}&\phantom{.}&\phantom{5}&\phantom{1}&\phantom{5}&\phantom{1}\end{array}&\\\color{Magenta}{33}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&7&0& 0 \downarrow&.&0&0&0&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{DarkCyan}{1}&\color{DarkCyan}{7}&\color{DarkCyan}{0}&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&6&5&\phantom{.}\\\hline\phantom{lll}&&5&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$33$$$'s are in $$$50$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$50-33 \cdot 1 = 50 - 33= 17$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&0&5&\color{Peru}{1}&\phantom{.}&\phantom{5}&\phantom{1}&\phantom{5}&\phantom{1}\end{array}&\\\color{Magenta}{33}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&7&0&0&.& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&6&5&\phantom{.}\\\hline\phantom{lll}&&\color{Peru}{5}&\color{Peru}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&3&\phantom{.}\\\hline\phantom{lll}&&1&7&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$33$$$'s are in $$$170$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$170-33 \cdot 5 = 170 - 165= 5$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&0&5&1&.&\color{Violet}{5}&\phantom{1}&\phantom{5}&\phantom{1}\end{array}&\\\color{Magenta}{33}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&7&0&0&.&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&6&5&\phantom{.}\\\hline\phantom{lll}&&5&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&3&\phantom{.}\\\hline\phantom{lll}&&\color{Violet}{1}&\color{Violet}{7}&\phantom{.}&\color{Violet}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&6&\phantom{.}&5\\\hline\phantom{lll}&&&&&5&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$33$$$'s are in $$$50$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$50-33 \cdot 1 = 50 - 33= 17$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&0&5&1&.&5&\color{Chartreuse}{1}&\phantom{5}&\phantom{1}\end{array}&\\\color{Magenta}{33}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&7&0&0&.&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&6&5&\phantom{.}\\\hline\phantom{lll}&&5&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&3&\phantom{.}\\\hline\phantom{lll}&&1&7&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&6&\phantom{.}&5\\\hline\phantom{lll}&&&&&\color{Chartreuse}{5}&\color{Chartreuse}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&3\\\hline\phantom{lll}&&&&&1&7&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$33$$$'s are in $$$170$$$?
The answer is $$$5$$$.
Write down $$$5$$$ in the upper part of the table.
Now, $$$170-33 \cdot 5 = 170 - 165= 5$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&0&5&1&.&5&1&\color{DarkBlue}{5}&\phantom{1}\end{array}&\\\color{Magenta}{33}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&7&0&0&.&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&6&5&\phantom{.}\\\hline\phantom{lll}&&5&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&3&\phantom{.}\\\hline\phantom{lll}&&1&7&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&6&\phantom{.}&5\\\hline\phantom{lll}&&&&&5&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&3\\\hline\phantom{lll}&&&&&\color{DarkBlue}{1}&\color{DarkBlue}{7}&\color{DarkBlue}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&6&5\\\hline\phantom{lll}&&&&&&&5&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 8
How many $$$33$$$'s are in $$$50$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$50-33 \cdot 1 = 50 - 33= 17$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccc}0&0&5&1&.&5&1&5&\color{BlueViolet}{1}\end{array}&\\\color{Magenta}{33}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccc}1&7&0&0&.&0&0&0&0\end{array}}&\\&\begin{array}{llllllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}1&6&5&\phantom{.}\\\hline\phantom{lll}&&5&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&3&\phantom{.}\\\hline\phantom{lll}&&1&7&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&6&\phantom{.}&5\\\hline\phantom{lll}&&&&&5&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&3\\\hline\phantom{lll}&&&&&1&7&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&6&5\\\hline\phantom{lll}&&&&&&&\color{BlueViolet}{5}&\color{BlueViolet}{0}\\&&&&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&3&3\\\hline\phantom{lll}&&&&&&&1&7\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1700}{33}=51. \overline{51}$$$
Answer: $$$\frac{1700}{33}=51.\overline{51}$$$