Murtoluvusta desimaaliluvuksi -laskin
Muunna murtoluvut desimaaliluvuiksi vaiheittain
Laskin muuntaa annetun murtoluvun (aidon tai epäaidon) tai sekaluvun desimaalimuotoon (mahdollisesti jaksolliseen) ja näyttää välivaiheet.
Solution
Your input: convert $$$\frac{1100}{25}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{4}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\25&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&1&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$25$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-25 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Fuchsia}{0}&\phantom{0}&\phantom{4}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{25}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Fuchsia}{1}& 1 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$25$$$'s are in $$$11$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$11-25 \cdot 0 = 11 - 0= 11$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Red}{0}&\phantom{4}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{25}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&1& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Red}{1}&\color{Red}{1}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$25$$$'s are in $$$110$$$?
The answer is $$$4$$$.
Write down $$$4$$$ in the upper part of the table.
Now, $$$110-25 \cdot 4 = 110 - 100= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&\color{Green}{4}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{25}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&1&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Green}{1}&\color{Green}{1}&\color{Green}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$25$$$'s are in $$$100$$$?
The answer is $$$4$$$.
Write down $$$4$$$ in the upper part of the table.
Now, $$$100-25 \cdot 4 = 100 - 100= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&4&\color{Peru}{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{25}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&1&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&0&\phantom{.}\\\hline\phantom{lll}&\color{Peru}{1}&\color{Peru}{0}&\color{Peru}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&1&0&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$25$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-25 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&4&4&.&\color{SaddleBrown}{0}\end{array}&\\\color{Magenta}{25}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}1&1&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&0&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&1&0&0&\phantom{.}\\\hline\phantom{lll}&&&\color{SaddleBrown}{0}&\phantom{.}&\color{SaddleBrown}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{1100}{25}=44.0$$$
Answer: $$$\frac{1100}{25}=44.0$$$