Murtoluvusta desimaaliluvuksi -laskin
Muunna murtoluvut desimaaliluvuiksi vaiheittain
Laskin muuntaa annetun murtoluvun (aidon tai epäaidon) tai sekaluvun desimaalimuotoon (mahdollisesti jaksolliseen) ja näyttää välivaiheet.
Solution
Your input: convert $$$\frac{11500}{125}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\phantom{9}&\phantom{2}&\phantom{.}&\phantom{0}\end{array}&\\125&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}1&1&5&0&0\end{array}}&\\&\begin{array}{lllll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$125$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-125 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Red}{0}&\phantom{0}&\phantom{0}&\phantom{9}&\phantom{2}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{125}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Red}{1}& 1 \downarrow&5&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$125$$$'s are in $$$11$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$11-125 \cdot 0 = 11 - 0= 11$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{BlueViolet}{0}&\phantom{0}&\phantom{9}&\phantom{2}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{125}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1& 5 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{BlueViolet}{1}&\color{BlueViolet}{1}&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&5&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$125$$$'s are in $$$115$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$115-125 \cdot 0 = 115 - 0= 115$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{SaddleBrown}{0}&\phantom{9}&\phantom{2}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{125}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&5& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{SaddleBrown}{1}&\color{SaddleBrown}{1}&\color{SaddleBrown}{5}&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&1&5&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$125$$$'s are in $$$1150$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$1150-125 \cdot 9 = 1150 - 1125= 25$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&\color{Fuchsia}{9}&\phantom{2}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{125}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&5&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&5&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}\color{Fuchsia}{1}&\color{Fuchsia}{1}&\color{Fuchsia}{5}&\color{Fuchsia}{0}&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&1&2&5&\phantom{.}\\\hline\phantom{lll}&&2&5&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$125$$$'s are in $$$250$$$?
The answer is $$$2$$$.
Write down $$$2$$$ in the upper part of the table.
Now, $$$250-125 \cdot 2 = 250 - 250= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&9&\color{DarkBlue}{2}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{125}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&5&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&5&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&1&5&0&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&1&2&5&\phantom{.}\\\hline\phantom{lll}&&\color{DarkBlue}{2}&\color{DarkBlue}{5}&\color{DarkBlue}{0}&\phantom{.}\\&-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&2&5&0&\phantom{.}\\\hline\phantom{lll}&&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$125$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-125 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&9&2&.&\color{DarkCyan}{0}\end{array}&\\\color{Magenta}{125}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&5&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&5&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&1&5&0&\phantom{.}\\-&\phantom{1}&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&1&2&5&\phantom{.}\\\hline\phantom{lll}&&2&5&0&\phantom{.}\\&-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&2&5&0&\phantom{.}\\\hline\phantom{lll}&&&&\color{DarkCyan}{0}&\phantom{.}&\color{DarkCyan}{0}\\&&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{11500}{125}=92.0$$$
Answer: $$$\frac{11500}{125}=92.0$$$